1. (2 marks) For a stream of inputs, recall the basic estimator to calculate the F_2 value of the stream:
 1. Let h : U → {−1, 1} be drawn uniformly at random from a strongly k-wise independent family of hash functions.
 2. Initialize Z = 0.
 3. For each stream element x_i ∈ U, Z ← Z + h(x_i)
 4. Return Z^2.

 In the above example, k is a placeholder for a number.

 To show that this basic estimator is unbiased, we need to show that E[Z^2] = F_2. What value of k is sufficient to show this?
 (a) 1
 (b) 2
 (c) 3
 (d) 4

 Solution: (b) 2

2. (2 marks) In question 1, we also need to show that Variance[Z^2] ≤ 2F_2^2. What value of k is sufficient to show this?
 (a) 1
 (b) 2
 (c) 3
 (d) 4

 Solution: (d) 4

3. (1 mark) In question 1, we can improve the accuracy of our estimator by using t hash functions h_1, h_2, ..., h_t instead of just one. If each estimator outputs Z^2_1, Z^2_2, ..., Z^2_t respectively, what is the relationship between the new estimator Y and Z^2_1, Z^2_2, ..., Z^2_t that gives us the correct output?
 (a) Y = t(Z^2_1 + Z^2_2 + ... + Z^2_t)
 (b) Y = Z^2_1 + Z^2_2 + ... + Z^2_t
 (c) Y = \frac{1}{t}(Z^2_1 + Z^2_2 + ... + Z^2_t)
 (d) Y = \frac{1}{t^2}(Z^2_1 + Z^2_2 + ... + Z^2_t)

 Solution: (c) Y = \frac{1}{t}(Z^2_1 + Z^2_2 + ... + Z^2_t)
4. (1 mark) In question 4, what is the relationship between \(\text{Variance}[Y] \) and the variance of our original estimator, \(\text{Variance}[Z] \)?

(a) \(\text{Variance}[Y] = t(\text{Variance}[Z]^2) \)

(b) \(\text{Variance}[Y] = \text{Variance}[Z^2] \)

(c) \(\text{Variance}[Y] = \frac{1}{t}(\text{Variance}[Z^2]) \)

(d) \(\text{Variance}[Y] = \frac{1}{t^2}(\text{Variance}[Z^2]) \)

Solution: (c) \(\text{Variance}[Y] = \frac{1}{t}(\text{Variance}[Z^2]) \)

5. (2 marks) In question 5, applying Chebyshev’s inequality, what is an upper bound on the value of \(\Pr(|Y - E[Y]| \geq \epsilon F_2) \)?

(a) \(\frac{1}{t\epsilon^2} \)

(b) \(\frac{2}{t\epsilon^2} \)

(c) \(\frac{1}{2t\epsilon^2} \)

(d) \(\frac{1}{t^2\epsilon^2} \)

Solution: (b) \(\frac{2}{t\epsilon^2} \)

6. (1 mark) Let us consider the property testing algorithm to test whether a graph \(G(V,E) \) is connected or \(\epsilon \)-far from being connected. \(|V| = n \) and \(|E| = m \). Let a connected component of \(G \) be a set of nodes in \(V \) connected to each other but to no other nodes. If \(G \) is connected, then there is only one connected component of \(G \).

![Connectivity Testing Algorithm](image)

When is \(G \) \(\epsilon \)-far from being connected?

(a) At least \(\epsilon |E| \) edges must be added to establish connectivity.

(b) Less than \(\epsilon |E| \) edges must be added to establish connectivity.

(c) At least \(\epsilon |V| \) edges must be added to establish connectivity.

(d) Less than \(\epsilon |V| \) edges must be added to establish connectivity.

Solution: (a) At least \(\epsilon |E| \) edges must be added to establish connectivity.

7. (1 mark) In question 6, is it possible for the given algorithm to reject \(G \) if it is connected?

(a) Yes

(b) No
8. (1 mark) In question 6, what is the running time of the algorithm?
 (a) $O(n^4 \epsilon^4 m^4)$
 (b) $O(n^3 \epsilon^3 m^3)$
 (c) $O(n^2 \epsilon^2 m^2)$
 (d) $O(n \epsilon m)$

 Solution: (b) $O(n^3 \epsilon^3 m^3)$

9. (1 mark) For question 6, consider the statement: “If G is ϵ-far from connected, then G has more than $\epsilon m + 1$ connected components.” Is this statement true or false?
 (a) True
 (b) False

 Solution: (a) True

10. (1 mark) For question 6, consider the statement: “If G is ϵ-far from connected, then at most ϵm^2 connected components are small, i.e. have no more than $\frac{2m}{\epsilon}$ nodes.” Is this statement true or false?
 (a) True
 (b) False

 Solution: (b) False

11. (1 mark) Consider the enforce and test approach for testing whether a given graph $G(V,E)$ is a biclique. Remember that a biclique is a graph where there exists a partition of vertices into V_1 and V_2 such that the edge set is exactly $V_1 \times V_2$. The algorithm is as follows:
 1. Pick vertex v_0 arbitrarily.
 2. For $i = 1$ to $2/\epsilon$
 3. Pick a pair of vertices u_i and v_i uniformly at random
 4. If biclique property violated, then REJECT.
 5. End For
 6. ACCEPT

 Which part of the algorithm constitutes the “test” part of the approach?
 (a) Line 1
 (b) Line 4
 (c) Lines 1 to 6
 (d) Lines 2 to 6

 Solution: (d) Lines 2 to 6

12. (1 mark) In question 11, is it possible for the algorithm to reject G if it is a biclique?
 (a) Yes
 (b) No

Name: ___________________________ Roll No.: ___________________________
13. (1 mark) In question [11], how can the biclique property be violated?
 (a) Some edges are missing.
 (b) Some edges are additional.
 (c) Some edges are missing and other edges are additional.

 Solution: (c) Some edges are missing and other edges are additional.

14. (2 marks) In question [11], if the graph G is ϵ-far from being a biclique, then what is the probability that a pair chosen in Line 3 violates the biclique property?
 (a) $\geq \frac{1}{\epsilon}$
 (b) $\geq \frac{\epsilon}{n^2}$
 (c) $\geq \epsilon$
 (d) $\geq \frac{\epsilon}{n}$

 Solution: (c) $\geq \epsilon$

15. (2 marks) In question [11], what is the probability that no violating pair is chosen over the course of the algorithm?
 (a) $\geq \frac{1}{\epsilon}$
 (b) $\leq \frac{\epsilon}{n^2}$
 (c) $\geq \frac{1}{n^2}$
 (d) $\leq \frac{1}{\epsilon^2}$

 Solution: (d) $\leq \frac{1}{\epsilon^2}$