1. (2 marks) A coin is biased to land heads with probability $1/10$, it is flipped 200 times consecutively. Use Markov’s inequality to give an upper bound on the probability that it lands heads at least 120 times.

 A. $6/10$
 B. $3/6$
 C. $1/6$
 D. none of these

2. (2 marks) The mean age of new professors at IIT is 40 with a standard deviation of 6. Between which two age limit must 75% of the professors lie? (You must use one of inequalities taught covered in the lectures.)

 A. $[28, 52]$
 B. $[30, 50]$
 C. $[34, 46]$
 D. none of these

3. (2 marks) Consider a biased coin with probability $p = 1/3$ of landing heads. Suppose the coin is flipped n times. Use the Chernoff bound to determine the smallest value for n so that the probability that more than half of the coin flips come out heads is less than 0.001.

 A. 9
 B. 249
 C. 99
 D. 499

4. (2 marks) If the covariance between two random variables X and Y is zero then

 A. X and Y are independent
 B. Knowing the value of X provides no information about the value of Y
 C. $E(X) = E(Y) = 0$
 D. none of the above
5. (2 marks) A company claims to produce ball bearings with mean weight of 6 grams and standard deviation of 1 gram. If we take a random sample of size 1000, what is the probability of the mean weight of the sample to be ≤ 5.9?
 A. 0.1
 B. 0.59
 C. 0.0008
 D. none of these

6. (2 marks) You take a random sample from some population and form a 96% confidence interval for the population mean, μ. Which quantity is guaranteed to be in the interval you form?
 A. μ
 B. 0
 C. 0.96
 D. sample mean \(\bar{x} \)

7. (2 marks) Consider a random variable X whose moments are defined by \(E[X^n] = n! \). Then, \(M(t) = \)
 A. 1/(1-t)
 B. \(t/(1-t) \)
 C. \(t/(1-t!) \)
 D. none of these

8. (6 marks) Consider the random graph \(G(n, p) \) on \(n \) vertices, where the probability of an edge between any two vertices in the graph is \(p \). Now, consider the random graph \(G(n, 1/2) \), Then:
 HINT: \(\frac{n-1}{2} \approx n/2 \), and do use one of the bounds.
 A. Almost all random graphs have minimum degree \(d = (\frac{n}{2} - \sqrt{n \ln n}) \).
 B. Almost all nodes have degree concentrated in the range \((\frac{n}{2} - \sqrt{3n/2 \ln n}, \frac{n}{2} + \sqrt{3n/2 \ln n}) \).
 C. Almost all random graphs (assume connected) have diameter ≥ 2.
 D. All of the above