Assignment 12

The due date for submitting this assignment has passed. As per our records you have not submitted this assignment.

1. Consider the following transition system.

 ![Diagram of transition system]

 Does the above transition system satisfy $F(p_1 \land p_2)$?
 - Yes
 - No

 No, the answer is incorrect. Score: 0

 Accepted Answers:

 2. Does the transition system of Question 1 satisfy $p_1 \lnot C p_2$?
 - Yes
 - No

 No, the answer is incorrect. Score: 0

 Accepted Answers:

 3. Does the transition system of Question 1 satisfy the LTL formula $F(p_2)$?
 - Yes
 - No

 No, the answer is incorrect. Score: 0

 Accepted Answers:

 4. Does the transition system of Question 1 satisfy the CTL formula $EF(p_1 \land p_2)$?
 - Yes
 - No

 No, the answer is incorrect. Score: 0

 Accepted Answers:

 5. Does the transition system of Question 1 satisfy the CTL formula $AX \neg AG(p_1 \land p_2)$?
 - Yes
 - No

 No, the answer is incorrect. Score: 0

 Accepted Answers:

 6. The LTL property $G(p_1 \land G \neg p_2)$
 - is invariant property
 - is safety property
 - is fairness property

 No, the answer is incorrect. Score: 0

 Accepted Answers:

 7. The LTL property $GF(p_1 \land G \neg p_2)$ is
 - is invariant property
 - is safety property
 - is fairness property

 No, the answer is incorrect. Score: 0

 Accepted Answers:

 8. Every non-deterministic B"uchi automaton can be converted to an equivalent deterministic B"uchi automaton.
 - True
 - False

 No, the answer is incorrect. Score: 0

 Accepted Answers:

 9. Every LTL formula ϕ can be converted to an equivalent CTL formula μ. By equivalent, we mean that a transition system satisfies ϕ if and only if it satisfies μ.
 - True
 - False

 No, the answer is incorrect. Score: 0

 Accepted Answers:

 10. The main goal of this course was to study
 - a technology to develop faster search engines
 - a method to automatically learn models of control software
 - a method to formally verify models of control software with respect to formally written specifications
 - program compliance

 No, the answer is incorrect. Score: 0

 Accepted Answers:

 11. The main goal of this course was to study
 - a technology to develop faster search engines
 - a method to automatically learn models of control software
 - a method to formally verify models of control software with respect to formally written specifications
 - program compliance

 No, the answer is incorrect. Score: 0

 Accepted Answers: