Assignment 6

The due date for submitting this assignment has passed. Due on 2020-03-11, 23:59 IST. As per our records you have not submitted this assignment.

1) 20 points
In a GPU system with memory transaction width of N, a global memory access can coalesce (bring in a single transaction) N consecutive floating point data values. Consider the following code snippet.

```c
__global__ void mem_access(float* A) {
    int tid = threadIdx.x;
    for(int i=1; i<=32; i*=2)
        A[tid*i]+=2;
}
```

Let the number of threads be 256 ($tid = 0$ to 255) and the size of the array A be 8192. Assuming a warp size of 16, compute the total number of global memory transactions made in the `for` loop for transaction widths of 16 elements. Assume no caching occurs.

A. 752
B. 992
C. 768
D. 1024

No, the answer is incorrect.
Score: 0
Accepted Answers:
A.
Consider the following kernel code snippet.

```c
#define BDIMX 32
#define BDIMY 32
__global__ void setRowReadCol(int *out)
{
    __shared__ int tile[BDIMY][BDIMX];
    unsigned int row_idx = threadIdx.y * blockDim.x + threadIdx.x;
    unsigned int col_idx = threadIdx.x * blockDim.y + threadIdx.y;
    tile[row_idx] = row_idx;
    __syncthreads();
    out[row_idx] = tile[col_idx];
}
```

The kernel is executed on a GPU architecture where the number of shared memory banks is 16 and the bank width is 4 bytes. The kernel is launched with the following configuration.

dim3 block (BDIMX, BDIMY);
dim3 grid (1,1);

Assuming the size of an integer is 4 bytes, match and pair the following.

i. Number of shared loads per warp request

ii. Number of shared stores per warp request

iii. Number of global loads per warp request

iv. Number of global stores per warp request

Select the correct option

A. i → b, ii→b, iii→a, iv→a
B. i → b, ii→a, iii→a, iv→a
C. i → c, ii→c, iii→a, iv→a
D. i → a, ii→a, iii→b, iv→b

No, the answer is incorrect.
Score: 0
Accepted Answers: B.