Assignment 10

The due date for submitting this assignment has passed. As per our records you have not submitted this assignment. Due on 2019-04-10, 23:59 IST.

1) Consider the transition diagram of a PDA given below with input alphabet $\Sigma = \{a, b\}$ and stack alphabet $\Gamma = \{X, Z\}$. Z is the initial stack symbol. This PDA accepts by final state. Let L denote the language accepted by the PDA. Which one of the following is TRUE?

- $L = \{a^n b^n | n \geq 0\}$ and is not accepted by any finite automata
- $L = \{a^n b^n | n \geq 0\} \cup \{a^n | n > 0\}$ and is not accepted by any PDA
- $L = \{a^n b^n | n \geq 0\} \cup \{a^n | n \geq 0\}$ and is context-free
- None of these

(a) (b) (c) (d)

No, the answer is incorrect. Score: 0

Accepted Answers: (c)
Which of the following pairs have DIFFERENT expressive power?

(a) Deterministic finite automata (DFA) and Non-deterministic finite automata (NFA)
(b) Chomsky Normal Form (CNF) and Context-free Grammar (CFG)
(c) Both (a) and (b)
(d) None of the above

No, the answer is incorrect.
Score: 0
Accepted Answers:
(d)

3)
If $L = \{(ab)^n a | n \geq 0\}$, then what is the missing part in the given below GNF, so that they are equivalent?

$S \rightarrow CE|a$
$A \rightarrow CE|a$
$B \rightarrow DF|b$
$C \rightarrow a$
$D \rightarrow b$
$E \rightarrow bFC|bC$

(a) $F \rightarrow aCD|aD$
(b) $F \rightarrow aED|aD$
(c) $F \rightarrow aFD|aD$
(d) None of the above

No, the answer is incorrect.
Score: 0
Accepted Answers:
(b)

4)
Consider the language L_1, L_2, L_3 as given below.

$L_1 = \{0^p1^q | p, q \in N \}$,

$L_2 = \{0^p1^q | p, q \in N$ and $p = q \}$

$L_3 = \{0^p1^q0^r | p, q, r \in N$ and $p = q = r \}$

Which of the following statements is NOT TRUE?

(a) Push Down Automata (PDA) can be used to recognize L_1 and L_2

(b) L_1 is a regular language

(c) L_3 is regular language

(d) None of the above

No, the answer is incorrect.
Score: 0
Accepted Answers:
(c)

5) The Greibach normal form grammar for the language $L = \{a^n b^{n+1} | n \geq 0 \}$ is?

(a) $S \rightarrow aSB | b, B \rightarrow bB | \epsilon$

(b) $S \rightarrow aSB | b, B \rightarrow bB | b$

(c) $S \rightarrow aSB | b, B \rightarrow b$

(d) None of the above

No, the answer is incorrect.
Score: 0
Accepted Answers:
(c)

6) Consider G be as below

$S \rightarrow bA | bCB | bABC | bB | bABB$

$B \rightarrow bC | bABC | b | bAB$

$C \rightarrow b | bABC | b | bBBC | bABC | bABB | bABB$

$X \rightarrow b$

$A \rightarrow a$

Is G in the GNF (Greibach Normal Form) form?

(a) Yes
(b) No

No, the answer is incorrect.
Score: 0
Accepted Answers:
(a)
(b)

7) The equivalent production rules corresponding to the production rules $S \rightarrow Sa_1|Sa_2|b_1|b_2$ is?

(a) $S \rightarrow b_1|b_2, \ A \rightarrow a_1A|a_2A|\epsilon$
(b) $S \rightarrow b_1|b_2|b_1A|b_2A, \ A \rightarrow a_1A|a_2A|\epsilon$
(c) $S \rightarrow b_1|b_2|b_1A|b_2A, \ A \rightarrow a_1A|a_2A$
(d) None of the above

No, the answer is incorrect.
Score: 0
Accepted Answers:
(b)

8)

1 point
Consider the pushdown automaton (PDA) below which runs over the input alphabet \((a, b, c) \). It has the stack alphabet \(\{Z_0, X\} \) where \(Z_0 \) is the bottom-of-stack marker. The set of states of the PDA is \(\{s, t, u, f\} \) where \(s \) is the start state and \(f \) is the final state. Initially \(Z_0 \) is in stack. The PDA accepts by final state. The transitions of the PDA given below are depicted in a standard manner. For example, the transition \((s, b, X) \rightarrow (t, XZ_0) \) means that if the PDA is in state \(s \) and the symbol on the top of the stack is \(X \), then it can read \(b \) from the input and move to state \(t \) after popping the top of stack and pushing the symbols \(Z_0 \) and \(X \) (in that order) on the stack. \((s, a, Z_0) \rightarrow (s, XXZ_0) \)
\[
\begin{align*}
(s, c, Z_0) & \rightarrow (f, \epsilon) \\
(s, a, X) & \rightarrow (s, XXX) \\
(s, b, X) & \rightarrow (t, \epsilon) \\
(t, c, X) & \rightarrow (u, \epsilon) \\
(u, c, X) & \rightarrow (u, \epsilon) \\
(u, c, Z_0) & \rightarrow (f, \epsilon)
\end{align*}
\]

The language accepted by the PDA is

(a) \(\{a^ib^nc^n | l = m = n\} \)
(b) \(\{a^ib^nc^n | l = m\} \)
(c) \(\{a^ib^nc^n | 2l = m + n\} \)
(d) \(\{a^ib^nc^n | m = n\} \)

No, the answer is incorrect.

Score: 0

Accepted Answers:
(a)
(b)
(c)
(d)

9) Consider the following grammars.
\[G_1 = \{S \rightarrow a, S \rightarrow AZ, A \rightarrow a, Z \rightarrow \varepsilon\} \]
\[G_2 = \{S \rightarrow a, S \rightarrow aZ, Z \rightarrow a\} \]
Which of \(G_1, G_2 \) are in CNF (Chomsky Normal Form)?
(a) \(G_1 \)
(b) \(G_2 \)
(c) Both
(d) None

No, the answer is incorrect.
The PDA \(M = (\{q_0, q_1, q_2\}, \{a, b\}, \{0, 1\}, \delta, q_0, 0, \{q_0\}) \)
with \(\delta(q_0, a, 0) = \{q_1, 10\}, \delta(q_1, a, 1) = \{q_1, 11\}, \delta(q_1, b, 1) = \{q_2, \lambda\}, \delta(q_2, b, 1) = \{q_2, \lambda\}, \delta(q_2, \lambda, 0) = \{q_0, \lambda\} \) Accepts the language

(a) \(L = \{a^n b^m | n, m \geq 0\} \)
(b) \(L = \{a^n b^n | n \geq 0\} \)
(c) \(L = \{a^n b^m | n, m > 0\} \)
(d) \(L = \{a^n b^n | n > 0\} \)