Course Code: Assignment 2

Due on 2014-08-21, 21:58:00

Week 3

Week 3 Contexts and Concepts - 6
Week 4 Visualizing Context and Concepts - 6
Week 5 Context and Concepts - 6
Week 6 Context and Concepts - 6
Week 7 Context and Concepts - 6
Week 8 Assignments and Grand Challenges - 6
Week 9 Assignments 2 - 6
Week 10 Video (Online) - 6
Live Session - 6

Task 1: Assignment 2

1. Suppose, you have a sequence of integers with $x_1 = \ldots = x_{k-1} = 0$, $x_k = 1$, $x_{k+1} = \ldots = x_m$, mapping at t_i.

2. Suppose, you are on your friends have a number of votes and you all want to know which is the current most popular candidate.

3. Suppose the sequence of integers is $x_1 = \ldots = x_{k-1} = 0$, $x_k = 1$, $x_{k+1} = \ldots = x_m$, mapping at t_i.

4. Suppose, you are on your friends have a number of votes and you all want to know which is the current most popular candidate.

5. Suppose the sequence of integers is $x_1 = \ldots = x_{k-1} = 0$, $x_k = 1$, $x_{k+1} = \ldots = x_m$, mapping at t_i.

6. Suppose, you are on your friends have a number of votes and you all want to know which is the current most popular candidate.

7. Suppose the sequence of integers is $x_1 = \ldots = x_{k-1} = 0$, $x_k = 1$, $x_{k+1} = \ldots = x_m$, mapping at t_i.

8. Suppose, you are on your friends have a number of votes and you all want to know which is the current most popular candidate.

9. Suppose the sequence of integers is $x_1 = \ldots = x_{k-1} = 0$, $x_k = 1$, $x_{k+1} = \ldots = x_m$, mapping at t_i.

10. Suppose, you are on your friends have a number of votes and you all want to know which is the current most popular candidate.

Task 2: Assignment 2

11. Suppose, an integer is given in the sequence which is in valid public key (x1, x2), inverting the primitive equations x_1 to the public key x_2.

12. Suppose the sequence of integers is $x_1 = \ldots = x_{k-1} = 0$, $x_k = 1$, $x_{k+1} = \ldots = x_m$, mapping at t_i.

13. Suppose, an integer is given in the sequence which is in valid public key (x1, x2), inverting the primitive equations x_1 to the public key x_2.

14. Suppose the sequence of integers is $x_1 = \ldots = x_{k-1} = 0$, $x_k = 1$, $x_{k+1} = \ldots = x_m$, mapping at t_i.

15. Suppose, an integer is given in the sequence which is in valid public key (x1, x2), inverting the primitive equations x_1 to the public key x_2.

16. Suppose the sequence of integers is $x_1 = \ldots = x_{k-1} = 0$, $x_k = 1$, $x_{k+1} = \ldots = x_m$, mapping at t_i.

17. Suppose, an integer is given in the sequence which is in valid public key (x1, x2), inverting the primitive equations x_1 to the public key x_2.

18. Suppose the sequence of integers is $x_1 = \ldots = x_{k-1} = 0$, $x_k = 1$, $x_{k+1} = \ldots = x_m$, mapping at t_i.