Assignment 6

The due date for submitting this assignment has passed.

As per our records you have not submitted this assignment.

Due on 2021-03-03, 23:59 IST.

1) Recall the definition of expander. A graph $G(V,E)$ is called a (n,d,p)-edge expander if G is a n-vertex, d-regular graph such that for 1 point all subsets S of V with at most $n/2$ many vertices, and $E(S,T)$ is at least $pd|S|$ where T is the complement set of S in V and $E(S,T)$ denotes the set of edges such that for (s,t) in $E(S,T)$, s is in S and t is in T. If a is the second largest eigen value, then what is the relation between a and p?

- a is at most $2p$
- $1- a$ is at most $2p$
- p is at most $(1-a)/2$

No, the answer is incorrect.
Score: 0

Accepted Answers:
1 - a is at most $2p$

2) Let G be a 3-regular graph with n vertices. Then, which of the following statements must be true. 1 point

- there exists a partition of $V(G)$, as V and V' so that the number of edges in G with one endpoint in V and one endpoint in V' is at least n.
- there exists a partition of $V(G)$, as V and V' so that the number of edges in G with one endpoint in V and one endpoint in V' is at most n.
- there exists a partition of $V(G)$, as V and V' so that the number of edges in G with one endpoint in V and one endpoint in V' is at most $n+1$.
- there exists a partition of $V(G)$, as V and V' so that the number of edges in G with one endpoint in V and one endpoint in V' is at least $n+1$.

No, the answer is incorrect.
Score: 0

Accepted Answers:
there exists a partition of $V(G)$, as V and V' so that the number of edges in G with one endpoint in V and one endpoint in V' is at least n.

3) Suppose A is an invertible square matrix. What can be said about the eigenvalues of A? 1 point

- Sum of the eigenvalues is zero
- Product of eigenvalues is non zero
- One of the eigenvalues is zero
- Sum of the eigenvalues is at least the dimension of A

No, the answer is incorrect.
Score: 0

Accepted Answers:
Product of eigenvalues is non zero

4) Recall the binary entropy function $H(p) = -p \log p - (1-p) \log (1-p)$, for p in $(0,1)$. For what value of p, does $H(p)$ gets the minimum value? 1 point

- $p=0$
- $p=1/2$
- $p=1$
- both (1) and (3)

No, the answer is incorrect.
Score: 0

Accepted Answers:
both (1) and (3)