

Week 11

DOWNLOAD VIDEOS

Assignment 3	
The due date for submitting this assignment has passed.	
As per our records you have not submitted this assignment.	Due on 2021-02-10, 23:59 IST.
1) Recall Razborov-Smolensky theorem which says that for primes p ≠ q, mod _p ∉ ACC ⁰ [q]. Which of the following option is one of the reasons for the requirement of primality?	1 point
 If q is composite then there exist polynomials in Fq [x1,, xn] of degree at most √n that agrees with modp on more than 99% of inputs. Approximated polynomial agrees with the circuit on very small fraction of inputs. modq gates in given circuit cannot be approximated correctly without Fermat's little theorem which holds only for primes. Primality requirement is not needed. It holds for all p,q. 	
No, the answer is incorrect. Score: 0 Accepted Answers: modq gates in given circuit cannot be approximated correctly without Fermat's little theorem which holds only for primes.	
2) Consider the following two statements. S1: There exists problems that cannot be solved by any Turing Machine. S2: There are un-computable problems solvable by a circuit family. Choose the appropriate option.	1 point
 S1 is true, S2 is true. S1 is true, S2 is false. S1 is false, S2 is true. S1 is false, S2 is false. 	
No, the answer is incorrect. Score: 0 Accepted Answers: S1 is true, S2 is true.	
3) Assuming EXP ⊆ P/poly we can prove that EXP = Σ ₂ . Then which of the following relation among complexity classes directly hold true?	1 point
\bigcirc P/poly \subseteq EXP \bigcirc PSPACE \subseteq P/poly \bigcirc PSPACE $=$ Σ_2 \bigcirc Both option (b) and (c)	
No, the answer is incorrect. Score: 0 Accepted Answers: Both option (b) and (c)	
4) Consider a 3 × 3 matrix A such that for all i, j ∈ [3], A _{i,j} = 3 i.e., all the 9 elements of matrix A are 3. Then what will be permanent of matrix A?	of 1 point
861620	
No, the answer is incorrect. Score: 0 Accepted Answers: 162	
5) Let F be a field of order 2^n where n is a positive integer. Then which of the following is t	rue. 1 point
 char F = 2^n char F = 2^p for some prime p which divides n. char F = 0 char F = 2 	
No, the answer is incorrect. Score: 0 Accepted Answers: $char F = 2$	