Assignment 9

The due date for submitting this assignment has passed. Due on 2021-03-24, 23:59 IST.

As per our records you have not submitted this assignment.

1) Let G_1 be an $n \times n$ matrix with (0,1) entries. We define a bipartite graph G_2 on 2n vertices (x_1, x_2, \ldots, x_n) and (y_1, y_2, \ldots, y_n) such that there is an edge between x_i and y_j if and only if $G_1[i][j]$ is 1. Which of the following two statements is/are true?

- (a) G_1 has a perfect matching then permanent of A is nonzero.
- (b) G_1 has a perfect matching then determinant of A is nonzero.

Score: 0

Accepted Answers:

- Only 1
- Only 2
- Both 1 and 2
- Neither 1 nor 2

2) Let NP be a deterministic interactive protocol that has k rounds of interactions for some k>1. Which of the following is known to be true?

- (a) NP is a strict subset of D^P
- (b) NP is equal to D^P
- (c) NP is equal to P
- (d) NP is not a subset of D^P

Score: 0

Accepted Answers:

- NP is a strict subset of D^P

3) Let G_1 be an $n \times n$ matrix. Which of the following two statements is/are true?

- (a) Determinant of G is nonzero then permanent of G is also nonzero.
- (b) Permanent of G is nonzero then determinant of G is also nonzero.

Score: 0

Accepted Answers:

- Only 1
- Only 2
- Both 1 and 2
- Neither 1 nor 2

4) Consider the following two languages.

- (a) $BPM = \{ d \in \{0,1\}^* | \text{d is an undirected, bipartite graph with } G \text{ has a perfect matching} \}$. BPM is logspace reducible to CYCLO, but CYCLO is not logspace reducible to BPM.
- (b) $CYCLO = \{ d \in \{0,1\}^* | \text{d is a directed graph with } G \text{ has a cycle cover} \}$. Which of the following is known to be true?

- (a) BPM is logspace reducible to CYCLO, but CYCLO is not logspace reducible to BPM.
- (b) BPM is logspace reducible to CYCLO, but CYCLO is not logspace reducible to BPM.
- (c) Both are logspace reducible to each other.
- (d) Neither is logspace reducible to each other.

Score: 0

Accepted Answers:

- Both are logspace reducible to each other

5) Consider the following language.

- (a) $PERMANENCY = \{ A | \text{A is a matrix and the permanent of A is divisible by 2} \}$. Which is the smallest known complexity class among following for Permanency?

- (a) d^p
- (b) NP
- (c) NC

Score: 0

Accepted Answers:

- NC

6) We define a class E^P which is same as NP except that the prover in this class is only as powerful as class E^P. Which of the following is known to be true?

- (a) IP is a strict subset of E^P
- (b) IP is equal to E^P
- (c) E^P is a strict subset of IP
- (d) E^P is not equal to IP

Score: 0

Accepted Answers:

- IP is equal to E^P

7) Which of the following is known to be true?

- (a) $IP[1]$ is a strict subset of BPP
- (b) $IP[1]$ is equal to BPP
- (c) $IP[1] = \text{MOD}_{3}$ where MOD_{3} is constant
- (d) $IP[1] = \text{BPP}$ where $k = 1$ is constant

Score: 0

Accepted Answers:

- $IP[1]$ is equal to BPP

8) Assume that there is a polynomial time algorithm to compute permanent of a matrix. What can we conclude from this?

- (a) $P = NP$
- (b) $NP = coNP$
- (c) $P = \text{PSPACE}$
- (d) $NP = \text{NPSPACE}$

Score: 0

Accepted Answers:

- $P = NP$
- $NP = \text{NPSPACE}$