NPTEL » Computational Complexity Theory

Course outline
How does an NPTEL online course work?
Week 0
Week 1
Week 2
Week 3
Week 4
week 5
week 6
Week 7
Week 8
 Lecture 24: Valiant-Vazirani Theorem - I
 Lecture 25: Amplified version of Valiant-Vazirani Theorem
Lecture 26: Toda's Theorem -
Lecture 27: Toda's Theorem -II
○ Quiz : Assignment 8
Feedback For Week 8
 Assignment 8 Solution
week 9
Week 10
Week 11

Week 12

DOWNLOAD VIDEOS

Assignment 8 The due date for submitting this assignment has passed. Due on 2021-03-17, 23:59 IST. As per our records you have not submitted this assignment. 1) There are n people at a party. They have all kept their hats in a dark closet. At the end of the party, they all go 4 points and randomly take a hat from the closet. Let p_n be the probability that no person will pick his/her own hat. What is $\lim_{n\to\infty} p_n$? $\frac{1}{\pi}$ $\frac{1}{\pi^2}$ $\frac{1}{e^2}$ No, the answer is incorrect. Accepted Answers: 2) Let \mathbb{F} be a finite field of order m (i.e., \mathbb{F} has m elements). Define the family of functions 4 points $H = \{h_{(a_0,a_1,\ldots,a_{k-1})}: \mathbb{F} \rightarrow \mathbb{F} \mid a_0,a_1,\ldots,a_{k-1} \in \mathbb{F}\}$ where $h_{(a_0,a_1,\ldots,a_{k-1})}(x)=a_0+a_1x+\ldots a_{k-1}x^{k-1}$. In other words, every tuple $(a_0,a_1,\ldots,a_{k-1})\in\mathbb{F}^k$ defines a polynomial and H consists of all these polynomials. For distinct $x_1, \ldots, x_k \in \mathbb{F}$ and for any $y_1, \ldots, y_k \in \mathbb{F}$, what is $Pr_{h \in H}[h(x_1) = y_1 \wedge \ldots h(x_k) = y_k]$? $m(m-2)/m^k$ $1/m^{k-1}$ $1/m^k$ Cannot be determined No, the answer is incorrect. Score: 0 Accepted Answers: $1/m^k$ 3) Which of the following problems are #P complete? 2 points SAT#SATCLIQUE#CLIQUE No, the answer is incorrect. Score: 0 Accepted Answers: #SAT#CLIQUE 4) If the number of solutions to a SAT instance can be computed in polynomial time, then 4 points $NP \neq coNP$ $\Sigma_3^p = \Pi_3^p$ P = PSPACEPH has a complete problem No, the answer is incorrect. Score: 0 Accepted Answers: $\Sigma_3^p = \Pi_3^p$ PH has a complete problem 5) A complexity class B is said to be 'low' for a complexity class A if $A^B = A$ (i.e., A with an oracle for 2 points B is equal to A). Which of the following classes are low for themselves? PNPBPP $\oplus P$ No, the answer is incorrect. Score: 0 Accepted Answers: \boldsymbol{P} BPP $\oplus P$ 6) Which of the following is a consequence of the Valiant Vazirani theorem? 6 points If USAT has a polynomial time algorithm, then BPP = RPIf USAT has a polynomial time algorithm, then NP = RP $NP\subseteq BPP^{\oplus P}$ $NP^{\oplus P} \subseteq BPP^{\oplus P}$ No, the answer is incorrect. Score: 0 Accepted Answers: If USAT has a polynomial time algorithm, then NP = RP $NP \subseteq BPP^{\oplus P}$ $NP^{\oplus P} \subseteq BPP^{\oplus P}$ A language L is in the class PP iff there exists a probabilistic Turing machine M, such that $x \in L \implies Pr[M(x) = 1] > 1/2$ $x \notin L \implies Pr[M(x) = 1] \le 1/2$ Which of the following statements are true? $BPP \subseteq PP$

```
6 points
  PP is closed under complementation
  P^{\#P} = P^{PP}
  If PP \subseteq \Sigma_i^P, then PH collapses to \Sigma_i^P
 No, the answer is incorrect.
 Score: 0
 Accepted Answers:
 BPP \subseteq PP
PP is closed under complementation
 P^{\#P} = P^{PP}
If PP \subseteq \Sigma_i^P, then PH collapses to \Sigma_i^P
8) Suppose you knew that PH \subseteq BPP^{\oplus P}. Which of the following statements would then imply Toda's theorem?
                                                                                                                                                                    2 points
   NP^{\oplus P}\subseteq P^{\#P}
   PP^{\oplus P} \subseteq P^{\#P}
```

 $coNP^{\oplus P}\subseteq P^{\#P}$

No, the answer is incorrect.

 $RP^{\oplus P}\subseteq P^{\#P}$

Accepted Answers: $PP^{\oplus P} \subseteq P^{\#P}$