Assignment 7

Due on 2021-03-10, 23:59 IST.

The due date for submitting this assignment has passed.

1. Assume that \(\text{BPP} \subseteq \text{NP} \). What can we conclude from this?
 - \(\text{P} = \text{NP} \)
 - \(\text{P} = \text{BPP} \)
 - \(\text{P} = \text{coBPP} \)
 - \(\text{NP} = \text{coNP} \)
 - No, the answer is incorrect.
 - Accepted Answers: \(\text{P} = \text{NP} \)

2. Let \(M \) be a PTIME. The expected running time of \(M \) on an input \(x \), \(\text{ETIME}(M, x) \), is the average running time of \(M \) on a taken-over all possible sequence of choices. \(M \) has expected running time \(\text{ETIME}(M) \) if for all \(x \in \{0,1\}^* \), \(\text{ETIME}(M, x) \leq \text{ETIME}(M) \).
 - \(x \) is \(\in \{0,1\}^* \).
 - \(\text{ETIME}(M) = 1 \).
 - \(\text{ETIME}(M) = 0 \).
 - \(\text{ETIME}(M) = \frac{1}{2} \).
 - \(\text{ETIME}(M) = \Omega(1) \).
 - Which of the following is/are known to be true?
 - \(\text{BPP} \) is a strict subset of \(\text{ZPP} \)
 - \(\text{ZPP} \) is a strict subset of \(\text{BPP} \)
 - \(\text{ZPP} \) is the same as \(\text{BPP} \)
 - \(\text{ZPP} \) and \(\text{BPP} \) are incomparable.
 - Accepted Answers: \(\text{ZPP} \subseteq \text{BPP} \)
 - No, the answer is incorrect.
 - Score: 0

3. Consider the following languages:
 - \(\text{DISKET} = \{ (q, g) \mid g \text{ has exactly two satisfying assignments} \} \)
 - Suppose we have a polynomial time algorithm for \(\text{DISKET} \). What can we conclude from this?
 - \(\text{NP} \) is not equal to \(\text{P} \).
 - \(\text{NP} = \text{P} \).
 - \(\text{NP} = \text{coP} \).
 - We cannot conclude anything new for \(\text{P} \) and \(\text{NP} \).
 - Accepted Answers: \(\text{NP} = \text{P} \)

4. Assume that \(\text{P} = \text{NP} \). What can we conclude from this?
 - \(\text{BPP} = \text{P} \)
 - \(\text{BPP} = \text{coP} \)
 - \(\text{P} = \text{coP} \)
 - We cannot conclude anything new for \(\text{P} \) and \(\text{BPP} \).
 - No, the answer is incorrect.
 - Score: 0

5. Which of the following is/are known to be true?
 - \(\text{BPP} \) is not equal to \(\text{PSPACE} \)
 - \(\text{BPP} = \text{PSPACE} \)
 - \(\text{PSPACE} = \text{BPP} \)
 - \(\text{PSPACE} \) and \(\text{BPP} \) are incomparable.
 - Accepted Answers: \(\text{BPP} \neq \text{PSPACE} \)
 - No, the answer is incorrect.
 - Score: 0

6. Which of the following is/are known to be true?
 - \(\text{RL} \) is a subset of \(\text{SPL} \)
 - \(\text{SPL} \) is a subset of \(\text{BPL} \)
 - \(\text{BPL} \) is a subset of \(\text{SPL} \)
 - \(\text{SPL} \) is a subset of \(\text{RL} \)
 - \(\text{NL} \) is a subset of \(\text{BPL} \)
 - No, the answer is incorrect.
 - Score: 0

7. Assume that \(\text{BPL} = \text{NL} \). What can we conclude about \(\text{L} \) and \(\text{NL} \)?
 - \(\text{L} = \text{NL} \)
 - \(\text{L} = \{1\} \)
 - \(\text{NL} = \{1\} \)
 - \(\text{L} \neq \text{NL} \)
 - Accepted Answers: \(\text{L} \neq \text{NL} \)

8. Which of the following two statements is/are known to be true?
 - \(\text{BPP} \subseteq \text{EXP} \)
 - \(\text{BPP} \subseteq \text{NEXP} \)
 - Only 1
 - Only 2
 - Both 1 and 2
 - Neither 1 nor 2
 - Accepted Answers: Neither 1 nor 2