Assignment 3

The due date for submitting this assignment has passed. As per our records you have not submitted this assignment.

Due on 2020-02-19, 23:59 IST.

1) Extending the idea of computing partial derivatives, what is the size of circuit computing second-order partial derivatives?
 - $O(s)$
 - $O(sn)$
 - $O(s^2n^2)$
 - $O(s^2n)$

 No, the answer is incorrect.
 Score: 0
 Accepted Answers:
 $O(sn)$

2) Let f and g be two polynomials in VNP. Which of the following is true?
 - Both $f+g$ and fg are in VNP.
 - $f+g$ is in VNP but fg is not.
 - fg is in VNP but $f+g$ is not.
 - None of $f+g$ and fg is in VNP.

 No, the answer is incorrect.
 Score: 0
 Accepted Answers:
 Both $f+g$ and fg are in VNP

3) Suppose there is an ABP of size s computing polynomial f.
 What will be the size of ABP computing degree-d homogeneous part of f?
 - $O(sd)$
 - $O(sd^2)$
 - $O(s^2d)$
 - Homogenization of ABP not possible.

 No, the answer is incorrect.
 Score: 0
 Accepted Answers:
 $O(sd)$

4) Given a 4×4 Vandermonde matrix A such that its $(i,j)^{th}$ element is $i^j - 1$.
 What will be the value of $\frac{\det(A)}{32!}$, where $\det(A)$ is determinant of matrix A?
 - $4!$
 - $1!$
 - $3!/2! 1!$
 - $1/(3! 2! 1!)$

 No, the answer is incorrect.
 Score: 0
 Accepted Answers:
 $4!$

5) Let $f(x_1, \ldots, x_n) = x_1 \ldots x_n$ over F_2. Then how many monomials does $f(x_1 + 1, \ldots, x_n + 1)$ have?
 - n
 - n^n
 - 2^n
 - $n!$

 No, the answer is incorrect.
 Score: 0
 Accepted Answers:
 2^n