Assignment 1

The due date for submitting this assignment has passed. As per our records, you have not submitted this assignment.

Due on 2020-02-12, 23:59 IST.

1. Consider a language $L = \{a^n | n \text{ is prime}\} \subseteq \{a\}^*$ for some symbol a. Which of the following options is true for L?
 - L is regular but not context-free language.
 - L is context-free but not regular.
 - L is neither regular nor context-free but accepted by a Turing machine.
 - None of the above.

 No, the answer is incorrect. Score: 0

Accepted Answers: L is neither regular nor context-free but accepted by a Turing machine.

2. Consider a 3×3 matrix A such that for all $i, j \in [3]$, $A_{i,j} = 3$ i.e., all the 9 elements of matrix A are 3. Then what will be permanent of matrix A?
 - 0
 - 6
 - 162
 - 0

 No, the answer is incorrect. Score: 0

Accepted Answers: 162

3. Define $g = 2^2x_1x_2x_3 \cdots x_n$. Which of the following statements is true?
 - g has poly(n) size circuit and is in VP.
 - g has poly(n) size circuit but is not in VP.
 - g does not have a poly(n) size circuit and hence is not in VP.
 - None of the above.

 No, the answer is incorrect. Score: 0

Accepted Answers: g has poly(n) size circuit but is not in VP.

4. Consider a 3×3 matrix A such that for all $i, j \in [3]$, $A_{i,j} = i + j$.
 - Then what will be determinant of matrix A?
 - 0
 - 3
 - 6
 - 9

 No, the answer is incorrect. Score: 0

Accepted Answers: 6

5. Identify the circuits and formulas from the following representations.

 - C1
 - C_1 is a circuit but C_1 and C_3 are formulas.
 - C_1 is a circuit but C_2 and C_3 are formulas.
 - C_2 is a formula but C_2 and C_3 are circuits.

 - C2
 - C_2 is a formula but C_1 and C_3 are circuits.

 - C3
 - C_3 is a circuit but C_2 and C_3 are formulas.
 - C_2 is a circuit but C_1 and C_3 are circuits.