Assignment 12

The due date for submitting this assignment has passed. As per our records you have not submitted this assignment.

1. Assuming \(P \) is in \(P \) then which of the following statements is necessarily true?
 - \(P = coRP \)
 - \(coRP \) is a subset of \(P \)
 - \(P = BPP \)
 - None of the above.
 No, the answer is incorrect. Score: 0
 Accepted Answers: None of the above.

2. Let \(f \) and \(g \) be two polynomial of degree of degree \(d \) such that there exists an \(f \) for which, \(f(t) = g(t) \). What can be said about \(f \) and \(g \)?
 - We need one more evaluation to distinguish between \(f \) and \(g \).
 - We need \(d \) more distinct evaluations to distinguish between \(f \) and \(g \).
 - The given information is sufficient to infer \(f = g \).
 - None of the above.
 No, the answer is incorrect. Score: 0
 Accepted Answers: We need \(d \) more distinct evaluations to distinguish between \(f \) and \(g \).

3. Consider a bivariate polynomial \(f(x, y) = \sum_{i=0}^{d} \sum_{j=0}^{d} a_{ij} x^i y^j \) where \(a_{ij} \in \mathbb{Q} \).
 Consider a substitution \(y = x^2 \) such that every bivariate monomials \(x^i y^j \) in \(f \) is mapped to distinct univariate monomial (note that \(x^i y^j \) maps to \(x^{2i+j} \)). What should be the minimum value of \(k \)?
 - 6
 - 5
 - 10
 - Such a map does not exist.
 No, the answer is incorrect. Score: 0
 Accepted Answers: 6

4. Suppose you have black-box access to circuits computing two linear polynomials \(f_1 \) and \(f_2 \) in variables \(x_1, x_2, \ldots, x_n \) with coefficient \(0 \) or \(1 \).
 What will be the best time complexity to test if \(f_1 + f_2 \) is identically zero or not?
 - \(O(n) \)
 - \(O(1) \)
 - \(O(n^n) \)
 - \(O(n^2) \)
 No, the answer is incorrect. Score: 0
 Accepted Answers: \(O(n) \)

5. Consider two univariate polynomial \(f_1 \) and \(f_2 \) over \(\mathbb{Z}_2 \) such that:
 - \(f_1 = x^2(x + 1)^2 \)
 - \(f_2 = x^2(x + 2)^2 \)
 Which of the following is a hitting set for \(\{f_1, f_2\} \) over \(\mathbb{Z}_2 \)?
 - \{0, 1\}
 - \{0, 1\}
 - \{0, 1, 2\}
 - \{0\}
 No, the answer is incorrect. Score: 0
 Accepted Answers: \{1, 2\}

6. Consider the polynomial \(f(x) = x^3 - x \) over \(\mathbb{Z}_2 = \{0, 1, 2\} \). Observe that
 - \(f(0) = f(1) = f(2) = 0 \). Then, which of the following statements for \(f(x) \) is false?
 - \(f(x) \) has infinitely many roots.
 - \(f(x) \) is identically zero.
 - \(f(x) \) is not identically zero.
 - \(f(x) \) is not identically zero.
 No, the answer is incorrect. Score: 0
 Accepted Answers: \(f(x) \) is identically zero.

7. Assuming \(\text{NEXP} \subseteq P/poly \) and \(\text{VP} = \text{VNP} \) which of the following is known to be true?
 - \(P \) is in \(P \)
 - \(P \) is equal to \(\text{NP} \)
 - \(P = \text{BPP} \)
 - \(P \) is not equal to \(\text{NP} \)
 No, the answer is incorrect. Score: 0
 Accepted Answers: \(P \) is in \(P \)