Unit 7 - Week 6

Assignment-6

The due date for submitting this assignment has passed. Due on 2018-03-21, 23:59 IST.

Submitted assignment

1) The ____________ of a graph G, is the maximum size of a set of pairwise adjacent vertices in G.

- Clique number
- Independence number
- Critical number
- Vertex cover

No, the answer is incorrect.

Score: 0

Accepted Answers:
- Clique number

2) True or False?

For every graph G, \(\chi(G) \geq \omega(G) \) and \(\chi(G) \geq n(G)/\alpha(G) \)

Where, \(\chi(G) \) : chromatic number, \(\omega(G) \) : clique number, \(\alpha(G) \) : independence number

- True
- False

No, the answer is incorrect.

Score: 0

Accepted Answers:
- True

3) Match the following pairs:

1 point

© 2014 NPTEL - Privacy & Terms - Honor Code - FAQs -

A project of

NPTEL
National Programme on Technology Enhanced Learning

In association with

NASSCOM

Funded by
A. A proper k-coloring of a k-chromatic graph
B. If \(\chi(H) < \chi(G) = k \) for every proper subgraph \(H \) of \(G \)
C. Cartesian product
D. Relative to a vertex ordering \(v_1, \ldots, v_n \) of \(V(G) \),
 assigning to \(v_i \) the smallest-indexed color not already used on its lower-indexed neighbors.

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1. Greedy coloring</td>
<td>2. (G) is color-critical or (k)-critical</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. Optimal coloring</td>
<td>4. Symmetric</td>
<td></td>
</tr>
</tbody>
</table>

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 point</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- A-2, B-4, C-1, D-3
- A-2, B-3, C-1, D-4
- A-3, B-4, C-2, D-1
- A-3, B-2, C-4, D-1

No, the answer is incorrect.
Score: 0
Accepted Answers:
A-3, B-2, C-4, D-1

4) True or False? 1 point

In a vertex ordering, each vertex has at most \(\Delta(G) \) earlier neighbors,
so the greedy coloring cannot be forced to use more than \(\Delta(G) + 1 \) colors.
This proves constructively that \(\chi(G) \leq \Delta(G) + 1 \).

- True
- False

No, the answer is incorrect.
Score: 0
Accepted Answers:
True

5) If \(G \) is an interval graph, then
where, \(\chi(G) \) : chromatic number, \(\omega(G) \) : clique number

- \(\chi(G) < \omega(G) \)
- \(\chi(G) > \omega(G) \)
- \(\chi(G) = \omega(G) \)
- None of the mentioned

No, the answer is incorrect.
Score: 0
Accepted Answers:
\(\chi(G) = \omega(G) \)

6) True or False? 1 point

If \(G \) is a connected graph other than a complete graph or an odd cycle,
then \(\chi(G) \leq \Delta(G) \)

- True
7) A graph G with no isolated vertices is color-critical if and only if ________________

- $\chi(G - e) = \chi(G)$ for every $e \in E(G)$
- $\chi(G - e) > \chi(G)$ for every $e \in E(G)$
- $\chi(G - e) < \chi(G)$ for every $e \in E(G)$
- None of the mentioned

No, the answer is incorrect.
Score: 0
Accepted Answers:
True

8) What is the value of chromatic polynomial $\chi(C_4; 3)$ for counting proper k-colorings of C_4?

- 16
- 18
- 24
- 48

No, the answer is incorrect.
Score: 0
Accepted Answers:
18