Assignment 4

The due date for submitting this assignment has passed. As per our records you have not submitted this assignment.

Due on 2019-09-25, 23:59 IST.

For every ring \(R \), we define a ring \(R^+ \) as the ring of infinite sequences of elements of \(R \). \(R^+ \) consists of all infinite sequences of the form \((a_0, a_1, ..., a_n, ...)\) where \(a_0, a_1, ..., a_n \) are all elements of \(R \). Addition and multiplication in this ring is defined component-wise, i.e.,

\[(a_0, a_1, ..., a_n) + (b_0, b_1, ..., b_n) = (a_0 + b_0, a_1 + b_1, ..., a_n + b_n)\]

and

\[(a_0, a_1, ..., a_n)(b_0, b_1, ..., b_n) = (a_0 b_0, a_1 b_1, ..., a_n b_n)\].

Now, based on this, solve \(Q.1 \) and \(Q.2 \).

1) Which of the following is correct option? 15 points

- For any ring \(R \), every ideal of \(\mathbb{Z}^\infty \) can be expressed as \(\langle f \rangle \), for some \(f \in \mathbb{Z}^\infty \)
- First option is incorrect, but every ideal of \(\mathbb{Z}^\infty \) can be expressed as \(\langle f \rangle \), for some \(f \in \mathbb{Z}^\infty \)
- For any ring \(R \), every ideal of \(\mathbb{Z}^\infty \) can be expressed as \(\langle t_0, t_1, ..., t_k \rangle \), for some \(t_0, t_1, ..., t_k \in \mathbb{Z}^\infty \) where \(k \) is some finite number.
- None of the above.

No, the answer is incorrect.

Score: 0

Accepted Answers:
First option is incorrect, but every ideal of \(\mathbb{Z}^\infty \) can be expressed as \(\langle f \rangle \), for some \(f \in \mathbb{Z}^\infty \)

2) Let \(R \) be some ring. Which of the following is correct?

- \((u_0, u_1, ..., u_m)\) is a unit of \(\mathbb{Z}^\infty \) if \(u_0, u_1, ..., u_m \) are all units of \(R \).
- \((p_0, p_1, ..., p_n)\) is irreducible in \(\mathbb{Z}^\infty \) if \(p_0, p_1, ..., p_n \) are all irreducible in \(R \).
- \(\mathbb{Z}^\infty \) is a unique factorization domain.
- Both (a) and (c).

No, the answer is incorrect.

Score: 0

Accepted Answers:
Both (a) and (c).

3) Which of the following are isomorphic pairs of rings?

1. \(\mathbb{Z}[\sqrt{-5}] / \langle 2, 1 + \sqrt{-5} \rangle \)
2. \(\mathbb{Z}[\sqrt{-5}] / \langle 2 \rangle \)
3. \(\mathbb{Z}[\sqrt{-5}] / \langle 2 \rangle \)
4. \(\mathbb{Z}[\sqrt{-2}] / \langle 2 \rangle \)
5. \(\mathbb{Z}[\sqrt{-2}] \)

- \((1,3)\) and \((2,4)\) are isomorphic pairs
- \((1,3)\) and \((2,5)\) are isomorphic pairs
- \((2,5)\) and \((1,3)\) are isomorphic pairs
- None of them is isomorphic to each other.

No, the answer is incorrect.

Score: 0

Accepted Answers:
Both (a) and (c).

4) Consider the following sets associated with two operations

1. \((E, \cdot)\) where \(E \) is set of even integers
2. \((X, \cdot)\) where \(X \) is set of odd integers
3. \((Q, +)\) where \(Q \) is set of rational numbers

Which of the following statements are correct?

- Only 1 and 2 are commutative ring.
- Only 2 and 3 are commutative ring.
- Only 3 and 1 are commutative ring.
- All three are commutative ring.

No, the answer is incorrect.

Score: 0

Accepted Answers:
Only 3 and 1 are commutative ring.

5) In \(\mathbb{Z}[\sqrt{-3}] \) which of the following statements is true?

- 21 is uniquely factorizable in irreducible products.
- 6 is not uniquely factorizable in irreducible products.
- 21 is not uniquely factorizable in irreducible products.
- Both 6 and 21 is not uniquely factorizable in irreducible products.

No, the answer is incorrect.

Score: 0

Accepted Answers:
Both 6 and 21 is not uniquely factorizable in irreducible products.