Assignment 3

The due date for submitting this assignment has passed. As per our records you have not submitted this assignment.

1) Consider two cyclic groups of order m and n respectively. What is the necessary and sufficient condition for $A \times B$ to be cyclic?
 - Either of m and n must be a prime number.
 - Both m and n must be some prime power.
 - Both m and n must be relatively prime.
 - None of the above.

 No, the answer is incorrect.
 Score: 0
 Accepted Answers:
 Both m and n must be relatively prime.

2) Suppose every proper subgroup H of a group G is cyclic. Which of the following statements is true?
 - G may not be cyclic.
 - G must be a cyclic group.
 - G must be an abelian group.
 - G must be a product of two cyclic groups.

 No, the answer is incorrect.
 Score: 0
 Accepted Answers:
 G may not be cyclic.

3) Consider the following statements
 S1: Any abelian group of order 45 has an element of order 9.
 S2: An abelian group of order 2 must have an odd number of elements of order 2.

 No, the answer is incorrect.
 Score: 0
 Accepted Answers:
 S1 is false, S2 is true.

4) Let $GL_2(F_2) = \{A|A\}$ is a 2x2 matrix with entries in F_2 and $\det(A) \neq 0$ be a group defined over matrix multiplication operation. Then what is the order of $GL_2(F_2)$?
 - 4
 - 6
 - 8
 - 16

 No, the answer is incorrect.
 Score: 0
 Accepted Answers:
 6

5) What is the smallest positive integer n such that there are exactly four non-isomorphic Abelian groups of order n?
 - 18
 - 12
 - 36
 - 48

 No, the answer is incorrect.
 Score: 0
 Accepted Answers:
 36