Unit 4 - Week 3

Assignments

Assignment 3

See on 2020-12-23, 2020-12-27

1. Let G be a regular graph.
 a. G is a regular graph if and only if its degree sequence is $\{d, d, \ldots, d\}$ for some d.
 b. Let G be a connected graph.
 i. G is a regular graph if and only if its degree sequence is $\{d, d, \ldots, d\}$ for some d.
 ii. G is a complete graph if and only if its degree sequence is $\{n-1, n-1, \ldots, n-1\}$.

2. Let G be a connected graph.
 a. G is a complete graph if and only if its degree sequence is $\{n-1, n-1, \ldots, n-1\}$.
 b. Let G be a regular graph.
 i. G is a complete graph if and only if its degree sequence is $\{n-1, n-1, \ldots, n-1\}$.
 ii. G is a complete graph if and only if its degree sequence is $\{n-1, n-1, \ldots, n-1\}$.

3. Let G be a connected graph.
 a. G is a complete graph if and only if its degree sequence is $\{n-1, n-1, \ldots, n-1\}$.
 b. Let G be a regular graph.
 i. G is a complete graph if and only if its degree sequence is $\{n-1, n-1, \ldots, n-1\}$.
 ii. G is a complete graph if and only if its degree sequence is $\{n-1, n-1, \ldots, n-1\}$.

4. Let G be a connected graph.
 a. G is a complete graph if and only if its degree sequence is $\{n-1, n-1, \ldots, n-1\}$.
 b. Let G be a regular graph.
 i. G is a complete graph if and only if its degree sequence is $\{n-1, n-1, \ldots, n-1\}$.
 ii. G is a complete graph if and only if its degree sequence is $\{n-1, n-1, \ldots, n-1\}$.

5. Let G be a connected graph.
 a. G is a complete graph if and only if its degree sequence is $\{n-1, n-1, \ldots, n-1\}$.
 b. Let G be a regular graph.
 i. G is a complete graph if and only if its degree sequence is $\{n-1, n-1, \ldots, n-1\}$.
 ii. G is a complete graph if and only if its degree sequence is $\{n-1, n-1, \ldots, n-1\}$.

6. Let G be a connected graph.
 a. G is a complete graph if and only if its degree sequence is $\{n-1, n-1, \ldots, n-1\}$.
 b. Let G be a regular graph.
 i. G is a complete graph if and only if its degree sequence is $\{n-1, n-1, \ldots, n-1\}$.
 ii. G is a complete graph if and only if its degree sequence is $\{n-1, n-1, \ldots, n-1\}$.

7. Let G be a connected graph.
 a. G is a complete graph if and only if its degree sequence is $\{n-1, n-1, \ldots, n-1\}$.
 b. Let G be a regular graph.
 i. G is a complete graph if and only if its degree sequence is $\{n-1, n-1, \ldots, n-1\}$.
 ii. G is a complete graph if and only if its degree sequence is $\{n-1, n-1, \ldots, n-1\}$.

8. Let G be a connected graph.
 a. G is a complete graph if and only if its degree sequence is $\{n-1, n-1, \ldots, n-1\}$.
 b. Let G be a regular graph.
 i. G is a complete graph if and only if its degree sequence is $\{n-1, n-1, \ldots, n-1\}$.
 ii. G is a complete graph if and only if its degree sequence is $\{n-1, n-1, \ldots, n-1\}$.

9. Let G be a connected graph.
 a. G is a complete graph if and only if its degree sequence is $\{n-1, n-1, \ldots, n-1\}$.
 b. Let G be a regular graph.
 i. G is a complete graph if and only if its degree sequence is $\{n-1, n-1, \ldots, n-1\}$.
 ii. G is a complete graph if and only if its degree sequence is $\{n-1, n-1, \ldots, n-1\}$.

10. Let G be a connected graph.
 a. G is a complete graph if and only if its degree sequence is $\{n-1, n-1, \ldots, n-1\}$.
 b. Let G be a regular graph.
 i. G is a complete graph if and only if its degree sequence is $\{n-1, n-1, \ldots, n-1\}$.
 ii. G is a complete graph if and only if its degree sequence is $\{n-1, n-1, \ldots, n-1\}$.