1. Show that all the rational functions \(\frac{p(z)}{q(z)} \), for some polynomial \(p(z) \) and \(q(z) \), are analytic over a domain in which \(q(z) \neq 0 \) at every point.

2. Show that \(f(z) = e^{iz^2} \) is an entire function.

3. Study the analyticity of the following functions: \(e^z \) and \(\sin(z) = \frac{e^{iz} - e^{-iz}}{2i} \).

4. Work out the relationship between absolute convergence and uniform convergence.

5. Let \(f \) be a power series with radius of convergence \(R \), then show that for any \(z \) such that \(|z| > R \), \(f \) is absolutely divergent.

6. Show that given the absolutely convergent series
 \[
 A = \sum_{n=0}^{\infty} \alpha_n, \quad B = \sum_{n=0}^{\infty} \beta_n
 \]
 we have the absolutely convergent series
 \[
 AB = \sum_{n=0}^{\infty} \gamma_n, \quad \gamma_n = \sum_{j=0}^{n} \alpha_j \beta_{n-j}.
 \]

7. If \(D \) be a domain bounded by a contour \(C \) for which Cauchy’s theorem is valid and \(f \) is continuous on \(C \) and regular (analytic and single-valued) in \(D \), then show that \(|f| \leq M \) on \(C \) implies \(|f| \leq M \) in \(D \) and if \(|f| = M \) in \(D \), then \(f \) is a constant.
 (Hints: Apply Cauchy’s Integral Formula to \(f(z)^n \) for the first part and to \(\frac{d^n}{dz^n} [f(z)] \) for the second part)