Assignment 12

The due date for submitting this assignment has passed. As per our records you have not submitted this assignment.

1. Let G be a group of order 14 and let H be a subgroup of G. What could be the order of H?
 - 2
 - 4
 - 7
 - 14
 - Both

 No, the answer is incorrect.
 Score: 0
 Accepted Answers:
 - 7

2. Let G be a group of order 15. What could be the order of H?
 - 3
 - 5
 - 6
 - 15
 - 7

 No, the answer is incorrect.
 Score: 0
 Accepted Answers:
 - 3
 - 5
 - 15

3. Which of the following statements are true?
 - The zero vector of any field forms a commutative group.
 - The non-zero elements of any ring form a commutative group.
 - The non-zero elements of a ring form a group.
 - The ring is a field.
 - The ring is a field.

 No, the answer is incorrect.
 Score: 0
 Accepted Answers:

4. Which of the following algebraic structures form a field?
 - $(\mathbb{Z}, +, \cdot)$
 - $(\mathbb{C}, +, \cdot)$
 - $(\mathbb{Q}, +, \cdot)$
 - $(\mathbb{R}, +, \cdot)$

 No, the answer is incorrect.
 Score: 0
 Accepted Answers:

5. Which of the following algebraic structures form a ring?
 - $(\mathbb{Z}, +, \cdot)$
 - $(\mathbb{C}, +, \cdot)$
 - $(\mathbb{Q}, +, \cdot)$
 - $(\mathbb{R}, +, \cdot)$

 No, the answer is incorrect.
 Score: 0
 Accepted Answers:

6. Which of the following algebraic structures form a finite field?
 - $(\mathbb{Z}_2, +, \cdot)$ with modulo 2 arithmetic.
 - $(\mathbb{Z}_3, +, \cdot)$ with modulo 3 arithmetic.
 - $(\mathbb{Z}_4, +, \cdot)$ with modulo 4 arithmetic.
 - $(\mathbb{Z}_5, +, \cdot)$ with modulo 5 arithmetic.

 No, the answer is incorrect.
 Score: 0
 Accepted Answers:

7. Consider the polynomial $p(x) = x^3 + 1$. Is $p(x)$ reducible in $\mathbb{Z}_2[x]$? If yes, write down its factorization.

 Accepted Answers:
 - NO
 - YES

 No, the answer is incorrect.
 Score: 0
 Accepted Answers:

8. For which of the following primes p can we construct a field of order p^2 using the polynomial $x^2 + 1$?
 - 3
 - 5
 - 11
 - 13

 No, the answer is incorrect.
 Score: 0
 Accepted Answers: