Assignment 4

Due on 2020-02-05, 23:59 IST.

The deadline for submitting this assignment has passed. Please note that you have not submitted the assignment.

The homework is not graded.

1. The binary number $B35_2$ is equal to
 1. 5
 2. 6
 3. 7
 4. 8

 No, the answer is incorrect.
 Accepted Answers:
 1. 8

2. Which of the following statements are true regarding the diagonal binary numbers B_A, B_B, B_C?
 1. B_A is written for or some 0.
 2. $B_B(100) < 2^{100}$
 3. $B_C(100) < 2^{100}$

 No, the answer is incorrect.
 Accepted Answers:
 1. $B_B(100) < 2^{100}$

3. Which of the following subsets are not such tree subsets?
 1. $(1, 4, 6, 9)$
 2. $(1, 4, 7, 8, 11)$
 3. $(1, 4, 5, 6, 10, 11)$
 4. $(1, 3, 6, 10, 11)$

 Yes, the answer is incorrect.
 Accepted Answers:
 1. $(1, 4, 7, 8, 11)$
 2. $(1, 3, 6, 10, 11)$

4. Which of the following nodes are prime nodes?
 1. $(1, 4, 5, 8, 11)$
 2. $(1, 4, 5, 8, 12)$
 3. $(1, 4, 5, 8, 13)$
 4. $(1, 4, 5, 8, 14)

 Yes, the answer is incorrect.
 Accepted Answers:
 1. $(1, 4, 5, 8, 13)$

5. Let $L_1, L_2, L_3, \ldots, L_n$ be events such that their dependency graph is a P-regular graph. Every vertex has degree k. We want to show that none of the L_i's occur using Local Lemma (LLL). Let the probability of each of the above mentioned events be less than $\frac{1}{k}$. What conditions would guarantee that we can apply LLL?

 1. $p > \frac{1}{X}$
 2. $p > \frac{1}{X}$
 3. $p > \frac{1}{X}$

 Yes, the answer is incorrect.
 Accepted Answers:
 1. $p > \frac{1}{X}$

6. Which of the following statements are true?

 - Any connected graph on 1000 vertices has a cut of size at least 990.
 - There exist a connected graph on 100 vertices in which the maximum cut is of size 499.
 - Any graph with 1000 edges has a cut of size at least $\frac{1000}{2}$.
 - There exist a connected graph with 1000 edges in which the maximum cut is of size 499.

 Yes, the answer is incorrect.
 Accepted Answers:
 1. Any connected graph on 1000 vertices has a cut of size at least 990.
 2. There exist a connected graph on 100 vertices in which the maximum cut is of size 499.
 3. Any graph with 1000 edges has a cut of size at least 500.
 4. There exist a connected graph with 1000 edges in which the maximum cut is of size 499.

7. Consider 100 events $E_1, E_2, \ldots, E_{100}$ such that the probability of every event is $1/100$. Which of the following methods would be the best to guarantee that none of these events occur?

 - Coin Flipping
 - Lottery Lottery
 - Independence of the E_i's
 - None of the other choices.

 Yes, the answer is incorrect.
 Accepted Answers:
 1. Independence of the E_i's
 2. None of the other choices.

8. Let G be a graph when the degree of every vertex is 7. Assume n is to be sufficiently large. Which of the following statements are true?
 1. $|E(G)| \geq \frac{7n}{2}$
 2. $|E(G)| \geq \frac{7n}{2}$
 3. $|E(G)| \geq \frac{7n}{2}$
 4. $|E(G)| \geq \frac{7n}{2}$

 Yes, the answer is incorrect.
 Accepted Answers:
 1. $|E(G)| \geq \frac{7n}{2}$