Assignment-6

The due date for submitting this assignment has passed. As per our records you have not submitted this assignment.

Due on 2018-09-12, 23:59 IST.

1) Which of the following equivalences is wrong for the temporal operators?

 - $AF\phi = \neg EG\neg \phi$
 - $\neg AF\phi = EG\neg \phi$
 - $EF\phi = \neg AF\neg \phi$
 - $\neg EF\phi = AG\neg \phi$

 No, the answer is incorrect.

 Score: 0

 Accepted Answers:
 $EF\phi = \neg AF\neg \phi$

2) Which of the following sets is an adequate set of temporal operators?

 - EX, AU
 - EX, AU, and EU
 - AG, EG, and AF
 - AG and EG

 No, the answer is incorrect.

 Score: 0

 Accepted Answers:
 EX, AU, and EU

3) Which of the following is FALSE about a temporal operators ϕ and p?

 - $AG\phi$, $EG\phi$, $AF\phi$, and $EF\phi$ can be written in terms of $AU\phi$ and $EU\phi$
 - $AX\phi$ can be written with $EG\phi$
 - $EX\phi$, $EG\phi$ $(AF\phi)$ and $E(\phi U p)$ is an adequate set of operators
 - $AX\phi$ can be written with $EX\phi$

 No, the answer is incorrect.

 Score: 0

 Accepted Answers:
 EX, AU, and EU

4) If the future temporal operator (F) includes the present, then which of the following equivalences is true?

 - $EFp = EX EFp$
 - $EFp = p \land EX EFp$
 - $EFp = p \lor EX EFp$

 No, the answer is incorrect.

 Score: 0

 Accepted Answers:
 $AX\phi$ can be written with $EG\phi$
5) Let p and q are atomic propositions. Which of the following pairs of CTL formulae is not equivalent?

- $\text{AFp} \lor \text{AFq}$ and $\text{AF}(p \lor q)$
- $\text{AG}(p \land q)$ and $\text{AGp} \land \text{AGq}$
- $\text{T and AGp} \Rightarrow \text{EGp}$
- $\text{EFp} \land \text{EFq}$ and $\text{EF}(p \lor q)$

No, the answer is incorrect.
Score: 0
Accepted Answers:
$\text{EFp} \land \text{EFq}$ and $\text{EF}(p \lor q)$

6) Which of the following pairs of CTL formulae is equivalent?

- $\text{EFp} \land \text{EFq}$ and $\text{EF}(p \land q)$
- $\text{EFp} \lor \text{EFq}$ and $\text{EF}(p \lor q)$
- EFp and EGp
- $\text{T and EGp} \Rightarrow \text{AGp}$

No, the answer is incorrect.
Score: 0
Accepted Answers:
$\text{EFp} \lor \text{EFq}$ and $\text{EF}(p \lor q)$

7) What does the CTL model checking algorithm do?

- Iteratively determines states which satisfy a given CTL formula
- A CTL formula is derived from the states of the model
- Determines the equivalent states of the model
- A model is created using specifications

No, the answer is incorrect.
Score: 0
Accepted Answers:
Iteratively determines states which satisfy a given CTL formula

8) What are the inputs and outputs for the labelling algorithm for model checking?

- INPUTS = Set of states which satisfy ϕ and a CTL Formula ϕ. OUTPUT = A CTL Model $M = (S, \rightarrow, L)$.
- INPUTS = A CTL Model $M = (S, \rightarrow, L)$ and a Set of states which satisfy ϕ. OUTPUT = CTL Formula ϕ.
- INPUTS = A CTL Model $M = (S, \rightarrow, L)$ and a CTL Formula ϕ. OUTPUT = Set of states which satisfy ϕ.
- INPUTS = A CTL Model $M = (S, \rightarrow, L)$. OUTPUT = A CTL Formula ϕ.

No, the answer is incorrect.
Score: 0
Accepted Answers:
INPUTS = A CTL Model $M = (S, \rightarrow, L)$ and a CTL Formula ϕ. OUTPUT = Set of states which satisfy ϕ.

9) Which of the following is not a subformula of the CTL Formula $\text{AGp} \land \text{AGq}$?

- p
- q
- AGp
- $p \land q$

No, the answer is incorrect.
Score: 0
Accepted Answers:
$p \land q$

10) Which of the following SAT function is FALSE?

- $\text{SAT}(\phi_1 \lor \phi_2) \Rightarrow \text{SAT}(\phi_1) \lor \text{SAT}(\phi_2)$
- $\text{SAT}(\phi_1 \land \phi_2) \Rightarrow \text{SAT}(\phi_1) \land \text{SAT}(\phi_2)$
- $\text{SAT}(\text{AX} \phi_1) = \text{SAT}(\neg \text{EX} \neg \phi_1)$

No, the answer is incorrect.
Score: 0
11) SAT(\(\varphi_1\)) = SAT(\(\neg E[T \cup \varphi_1]\))

No, the answer is incorrect.
Score: 0
Accepted Answers:
- SAT(\(\varphi_1\)) = SAT(\(\neg E[T \cup \varphi_1]\))

12) SAT_EX(p) is a function that determines the set of states satisfying EXp. In the given figure, SAT(p) = \{S4, S6\}. What is SAT_EX(p)?

No, the answer is incorrect.
Score: 0
Accepted Answers:
- \{S1, S3\}
13) Let \(\text{SAT}(p,q) \) be a function that determines the set of states satisfying \(E(p \lor q) \). In the given figure, \(\text{SAT}(p) = \{S1, S2\} \) and \(\text{SAT}(q) = \{S3\} \). Now, what is \(\text{SAT}(p \lor q) \)?

- \(\{S3\} \)
- \(\{S3, S4, S5\} \)
- \(\{S1, S2, S3\} \)
- \(\{S1, S2\} \)

No, the answer is incorrect.
Score: 0
Accepted Answers:
\(\{S1, S2, S3\} \)

14) Let \(p \) be an atomic proposition. Choose the correct one?

- \(AF(p) = E[p \lor p] \)
- \(AF(p) = p \lor AXAF(p) \)
- \(EF(p) = p \lor AXAF(p) \)
- \(AF(p) = p \land AXAF(p) \)

No, the answer is incorrect.
Score: 0
Accepted Answers:
\(AF(p) = p \lor AXAF(p) \)

15) Consider the mutual exclusion example with 4 processes, \(P_1, P_2, P_3, \) and \(P_4 \). The atomic propositions for \(P_i \) are \(n_i, t_i \) and \(c_i \), where \(1 \leq i \leq 4 \). What is the CTL formula to represent Safety property?

- \(AG \neg((c_1 \land c_2) \lor c_3 \lor c_4) \)
- \(AG \neg((c_1 \land c_3) \lor c_2 \lor c_4) \)
- \(AG \neg((c_2 \land c_3) \lor c_1 \land c_3) \)
- \(AG \neg((c_1 \land c_2 \land c_3 \land c_4) \)

No, the answer is incorrect.
Score: 0
Accepted Answers:
\(AG \neg((c_1 \land c_2 \land c_3 \land c_4) \)

16) Consider the model \(M \) shown in the figure. \(p \) is an atomic proposition. Determine the set of states satisfying \(AXp \) using model checking algorithm, where
Consider the model M shown in the figure. p and q are atomic propositions. Determine the set of states satisfying $E(p U q)$ using model checking algorithm.
Consider the model M shown in the figure. \(p \) and \(q \) are atomic propositions. Determine the set of states satisfying \(AF(\neg p \land q) \) using model checking algorithm.

No, the answer is incorrect.
Score: 0
Accepted Answers:
S1, S4, S5, S6, S7

1 point