Assignment 2

Due on: 2019-01-26, 23:59:59

Week 1

<table>
<thead>
<tr>
<th>1.</th>
<th>2.</th>
<th>3.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit</td>
<td>Assignment</td>
<td>Notes</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

Instructions:

1. **Unit 1 Assignment 2**
 - **Title:** Unit 1 Assignment 2
 - **Description:**
 - Objectives:
 - Understand the concepts of stress and strain.
 - Be able to calculate and interpret stress and strain values.
 - Requirements:
 - Submit the assignment by the due date.
 - Include all calculations and reasoning.
 - **Notes:**
 - This assignment covers the material from Unit 1.
 - Good practice.

Week 2

Unit 2 - Week 2

<table>
<thead>
<tr>
<th>1.</th>
<th>2.</th>
<th>3.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

Instructions:

1. **Unit 2 Assignment 2**
 - **Title:** Unit 2 Assignment 2
 - **Description:**
 - Objectives:
 - Understand the concepts of stress and strain.
 - Be able to calculate and interpret stress and strain values.
 - Requirements:
 - Submit the assignment by the due date.
 - Include all calculations and reasoning.
 - **Notes:**
 - This assignment covers the material from Unit 2.
 - Good practice.

Diagram:

- **Diagram Description:**
 - A diagram showing stress-strain curves for different materials.
 - Key points:
 - Elastic limit
 - Yield point
 - Ultimate strength
 - Failure point
 - Explanation:
 - Stress-strain curves help in understanding the mechanical behavior of materials.
 - Each material has a distinct curve.

Table:

<table>
<thead>
<tr>
<th>Material</th>
<th>Elastic Limit</th>
<th>Yield Point</th>
<th>Ultimate Strength</th>
<th>Failure Point</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steel</td>
<td>200 MPa</td>
<td>400 MPa</td>
<td>600 MPa</td>
<td>800 MPa</td>
</tr>
<tr>
<td>Aluminum</td>
<td>50 MPa</td>
<td>100 MPa</td>
<td>150 MPa</td>
<td>200 MPa</td>
</tr>
<tr>
<td>Glass</td>
<td>400 MPa</td>
<td>1000 MPa</td>
<td>2000 MPa</td>
<td>2500 MPa</td>
</tr>
</tbody>
</table>

Question:

- **Question Description:**
 - A question asking students to analyze the stress-strain curves for a given material.
 - **Answer:**
 - A detailed analysis explaining the material's behavior under stress.

Final Notes:

- **Feedback Notes:**
 - Positive feedback on the student's understanding of the concepts.
 - Suggestions for improvement:
 - More focus on the application of concepts.

Additional Resources:

- Textbooks:
 - *Material Science*
 - *Engineering Mechanics*
- Online Resources:
 - [Engineering Mechanics](https://example.com)
 - [Material Science](https://example.com)