Assignment 6

The due date for submitting the assignment has passed. Do not attempt to upload assignments after the deadline.

Unit 8: Week 6

Course Outline

- Week 1
- Week 2
- Week 3
- Week 4
- Week 5
- Week 6

Assignment Details

- **Due Date:** 2020-11-11, 23:00 UTC

Questions:

1. **Velocity head:**
 - The velocity head is given by $h_v = rac{V^2}{2g}$, where V is the velocity and g is the acceleration due to gravity.
 - The velocity head in a channel can be determined by measuring the velocity and using the above formula.

2. **Hydraulic radius:**
 - The hydraulic radius r_h is defined as $r_h = rac{A}{P}$, where A is the cross-sectional area and P is the wetted perimeter.
 - For a rectangular channel, the hydraulic radius is approximately equal to the average depth.

3. **Flow depth:**
 - For a rectangular channel, the flow depth D is approximately equal to the average depth $D = rac{A}{B}$, where A is the cross-sectional area and B is the width.

4. **Water surface shape:**
 - The water surface shape of a stream or river can be described by the stage-discharge relationship.

5. **Critical flow condition:**
 - In a rectangular channel, the critical flow condition is given by $f = rac{V^2}{gD}$, where f is the Froude number, V is the velocity, D is the depth, and g is the acceleration due to gravity.

6. **Stage-discharge relationship:**
 - The stage-discharge relationship can be used to determine the flow rate from the water surface elevation.

<table>
<thead>
<tr>
<th>Week 1</th>
<th>Week 2</th>
<th>Week 3</th>
<th>Week 4</th>
<th>Week 5</th>
<th>Week 6</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Marks:

- Total Marks: 100
- **Current Marks:**
 - **Assignment:** 0
 - **Discussion:** 0
 - **Forum:** 0
 - **Quiz:** 0
 - **Exam:** 0

Notes:

- Please review the course materials and practice problems for additional help.
- Submit all assignments before the deadline to avoid penalties.

Instructor:

- Contact: [Instructor Email]
- Phone: [Instructor Phone]
- Office Hours: [Office Hours]

Submission Guidelines:

- Submit assignments through the course's online portal.
- Late submissions will be penalized.

Feedback:

- Regular feedback will be provided through the discussion forum and quizzes.

Resources:

- Textbooks:
 - [Water Resources Engineering]
 - [Hydraulic Engineering]
- Online Resources:
 - [Hydrology Online Tutor]
 - [National Center for Water Study]
- Other:
 - [Hydraulic and Water Resources Engineer's Handbook]

Acknowledgments:

- Thank you for your participation and dedication to the course.

Questions:

- If you have any questions, please reach out to the instructor via email or during office hours.

Institution:

[University of [Institution Name]]

Last Updated:

[Last Updated Date]