Assignment 3

Due Date: September 09, 2016

Unit 5 - Week 3

Electrostatics

Module 5

Week 2

Week 3

Week 4

Module 6

Week 1

Assignment

Electrostatic Potential

1. **Objective:**
 - To understand the concepts of electrostatic potential.
 - To calculate the electrostatic potential at various points.

2. **Background:**
 - Electrostatic potential is a scalar quantity that represents the potential energy per unit charge at a point in an electrostatic field.

3. **Requirements:**
 - Students are expected to:
 - Understand the concept of electrostatic potential.
 - Be able to calculate electrostatic potential at given points.

4. **Assignment:**
 - Calculate the electrostatic potential at various points given the electric field and the charge distribution.

Instructions:

- **Step 1:** Identify the electric field and the charge distribution.
- **Step 2:** Use the formula for electrostatic potential: \(V = \frac{1}{4\pi\varepsilon_0} \oint E \cdot dl \). Where \(E \) is the electric field and \(\varepsilon_0 \) is the permittivity of free space.
- **Step 3:** Calculate the potential at the given points.

<table>
<thead>
<tr>
<th>Point</th>
<th>Electrostatic Potential</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>50 V</td>
</tr>
<tr>
<td>B</td>
<td>100 V</td>
</tr>
<tr>
<td>C</td>
<td>150 V</td>
</tr>
</tbody>
</table>

Submission:

- **Due Date:** September 09, 2016
- **Format:** Email submission to the instructor.
- **Requirements:**
 - All calculations must be shown.
 - Correct formula usage and unit consistency.

Grading:

- **Criteria:**
 - Theoretical understanding:
 - Understanding of electrostatic potential.
 - Calculation accuracy:
 - Correct application of the formula.

Notes:

- **Additional Resources:**
 - Textbook chapters on electrostatics.
 - Online resources on electrostatic potential calculations.

Assignment 3

Module 5

Week 2

Assignment 2

Electrostatic Potential

1. **Objective:**
 - To understand the concepts of electrostatic potential.
 - To calculate the electrostatic potential at various points.

2. **Background:**
 - Electrostatic potential is a scalar quantity that represents the potential energy per unit charge at a point in an electrostatic field.

3. **Requirements:**
 - Students are expected to:
 - Understand the concept of electrostatic potential.
 - Be able to calculate electrostatic potential at given points.

4. **Assignment:**
 - Calculate the electrostatic potential at various points given the electric field and the charge distribution.

Instructions:

- **Step 1:** Identify the electric field and the charge distribution.
- **Step 2:** Use the formula for electrostatic potential: \(V = \frac{1}{4\pi\varepsilon_0} \oint E \cdot dl \). Where \(E \) is the electric field and \(\varepsilon_0 \) is the permittivity of free space.
- **Step 3:** Calculate the potential at the given points.

<table>
<thead>
<tr>
<th>Point</th>
<th>Electrostatic Potential</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>50 V</td>
</tr>
<tr>
<td>B</td>
<td>100 V</td>
</tr>
<tr>
<td>C</td>
<td>150 V</td>
</tr>
</tbody>
</table>

Submission:

- **Due Date:** September 09, 2016
- **Format:** Email submission to the instructor.
- **Requirements:**
 - All calculations must be shown.
 - Correct formula usage and unit consistency.

Grading:

- **Criteria:**
 - Theoretical understanding:
 - Understanding of electrostatic potential.
 - Calculation accuracy:
 - Correct application of the formula.

Notes:

- **Additional Resources:**
 - Textbook chapters on electrostatics.
 - Online resources on electrostatic potential calculations.

Assignment 3

Module 5

Week 2

Assignment 2

Electrostatic Potential

1. **Objective:**
 - To understand the concepts of electrostatic potential.
 - To calculate the electrostatic potential at various points.

2. **Background:**
 - Electrostatic potential is a scalar quantity that represents the potential energy per unit charge at a point in an electrostatic field.

3. **Requirements:**
 - Students are expected to:
 - Understand the concept of electrostatic potential.
 - Be able to calculate electrostatic potential at given points.

4. **Assignment:**
 - Calculate the electrostatic potential at various points given the electric field and the charge distribution.

Instructions:

- **Step 1:** Identify the electric field and the charge distribution.
- **Step 2:** Use the formula for electrostatic potential: \(V = \frac{1}{4\pi\varepsilon_0} \oint E \cdot dl \). Where \(E \) is the electric field and \(\varepsilon_0 \) is the permittivity of free space.
- **Step 3:** Calculate the potential at the given points.

<table>
<thead>
<tr>
<th>Point</th>
<th>Electrostatic Potential</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>50 V</td>
</tr>
<tr>
<td>B</td>
<td>100 V</td>
</tr>
<tr>
<td>C</td>
<td>150 V</td>
</tr>
</tbody>
</table>

Submission:

- **Due Date:** September 09, 2016
- **Format:** Email submission to the instructor.
- **Requirements:**
 - All calculations must be shown.
 - Correct formula usage and unit consistency.

Grading:

- **Criteria:**
 - Theoretical understanding:
 - Understanding of electrostatic potential.
 - Calculation accuracy:
 - Correct application of the formula.

Notes:

- **Additional Resources:**
 - Textbook chapters on electrostatics.
 - Online resources on electrostatic potential calculations.