Course outline

How to access the portal

Week 1

- Lecture 1: Importance of Mineral Processing
- Lecture 2: Importance to Mineral Processing (Contd.)
- Lecture 3: Importance of Mineral Processing (Contd.)
- Lecture 4: Importance of Mineral Processing (Contd.)
- Lecture 5: Importance of Mineral Processing (Contd.)
- Quiz: Week 1 Assignment 1
- Feedback for Week 1
- Week 1 Assignment_solution

Week 1 Assignment 1

The due date for submitting this assignment has passed. Due on 2018-02-05, 23:59 IST.

Submitted assignment

1) Natural inorganic substances possessing definite chemical compositions and atomic structures are called ____________.
 - Mineral
 - Rock
 - Ore
 - Gangue

 No, the answer is incorrect.
 Score: 0
 Accepted Answers:
 Mineral

2) By definition, Coal is a ____________.
 - Ore
 - Rock
 - Mineral
 - Biomass

 No, the answer is incorrect.
 Score: 0
 Accepted Answers:
 Rock

3) ____________ and ____________ have exactly the same chemical composition, being composed entirely of carbon atoms, but have widely different properties due to the arrangements of carbon atoms within the crystal lattice.
 - Invalid HTML tag: tag name o:p is not allowed

© 2014 NPTEL - Privacy & Terms - Honor Code - FAQs -
In association with
Funded by

Tuesday 15 May 2018 09:27 AM
4) Which of the following is not considered as Coal? **Invalid HTML tag: tag name o:p is not allowed**

- Anthracite
- Bituminous
- Lignite
- Cassiterite

No, the answer is incorrect.
Score: 0
Accepted Answers:
Cassiterite

5) Cuprite is an ore of ____________.

- Iron
- Lead
- Aluminium
- Copper

No, the answer is incorrect.
Score: 0
Accepted Answers:
Copper

6) In a mineral processing operation, the concentrate grade and recovery is **Invalid HTML tag: tag name o:p is not allowed**

- Directly proportional
- Inversely proportional
- Equal to each other
- Grade is always greater than recovery

No, the answer is incorrect.
Score: 0
Accepted Answers:
Inversely proportional

7) Chemical methods of ore processing requires __________ energy than ____________ physical methods. **Invalid HTML tag: tag name o:p is not allowed**

- Much More
- Less
- Equal
- Very Less

No, the answer is incorrect.
Score: 0
Accepted Answers:
8) Mineral processing should preferably be carried out at the mine site to reduce.
 - Water cost
 - Electricity cost
 - Transportation cost
 - Grinding cost

 No, the answer is incorrect.
 Score: 0
 Accepted Answers:
 - Transportation cost

9) Losses during mineral processing depend very much on the ore mineralogy and on the technology available to achieve efficient concentration.
 - True
 - False
 - Difficult to comment
 - Partially True

 No, the answer is incorrect.
 Score: 0
 Accepted Answers:
 - True

10) ________ process allowed the exploitation of very low grade copper deposits which were previously uneconomic to treat.
 - Gravity Concentration
 - Magnetic
 - Electrical Separation
 - Froth Flotation

 No, the answer is incorrect.
 Score: 0
 Accepted Answers:
 - Froth Flotation

11) Which is not a unit step in mineral processing operation?
 - Liberation
 - Transportation
 - Separation
 - Concentration

 No, the answer is incorrect.
 Score: 0
 Accepted Answers:
 - Transportation

12) Liberation takes place as a result of ________________.
 - Size reduction
 - Size Separation
 - Concentration

 Score: 0
Screening

No, the answer is incorrect.
Score: 0
Accepted Answers:
Size reduction

13) __________ is the percentage of the total metal contained in the ore that is recovered in concentrate.

- Grade
- Tenor
- Recovery
- Enrichment ratio

No, the answer is incorrect.
Score: 0
Accepted Answers:

14) __________ is the ratio of the weight of the feed to the weight of the concentrate.

- Enrichment ratio
- Ratio of concentration
- Yield
- Assay

No, the answer is incorrect.
Score: 0
Accepted Answers:

15) An iron ore flotation plant treats 600 tph of iron ore with feed grade 52% to upgrade it to 61% with a concentrate yield of 420 tph. Calculate the recovery (in percentage) of the process.

- 70%
- 66.8%
- 82.1%
- 76.8%

No, the answer is incorrect.
Score: 0
Accepted Answers:

82.1%