Assignment 2

The plane of the diagram shows the forces on the water hammer pressure or flow. The acceleration of the water due to the pressure drop is given by

\[a = \frac{F}{m} \]

where
- \(a \) is the acceleration
- \(F \) is the force
- \(m \) is the mass of the water

1. What is the pressure change in the system at the point where the force is applied?
2. How is the force related to the acceleration of the water?
3. What is the significance of the pressure change in the system?

The diagram shows the forces acting on the water. The acceleration of the water due to the pressure drop is given by

\[a = \frac{F}{m} \]

where
- \(a \) is the acceleration
- \(F \) is the force
- \(m \) is the mass of the water

1. What is the pressure change in the system at the point where the force is applied?
2. How is the force related to the acceleration of the water?
3. What is the significance of the pressure change in the system?

The diagram shows the forces acting on the water. The acceleration of the water due to the pressure drop is given by

\[a = \frac{F}{m} \]

where
- \(a \) is the acceleration
- \(F \) is the force
- \(m \) is the mass of the water

1. What is the pressure change in the system at the point where the force is applied?
2. How is the force related to the acceleration of the water?
3. What is the significance of the pressure change in the system?

The diagram shows the forces acting on the water. The acceleration of the water due to the pressure drop is given by

\[a = \frac{F}{m} \]

where
- \(a \) is the acceleration
- \(F \) is the force
- \(m \) is the mass of the water

1. What is the pressure change in the system at the point where the force is applied?
2. How is the force related to the acceleration of the water?
3. What is the significance of the pressure change in the system?