NOTE: Attempt ALL questions. Make suitable assumptions, wherever necessary.

1. Consider the problem statement in 'Surface Water Hydraulics: Unsteady 1D Channel Flow'. What is the maximum discharge (w.r.t. time) for at $x = 4000$ m from internal junction node in Channel reach 3 of the network. Use the code unsteady_1D_channel_network_with_reverse_cfg1.sci. Keep the channel segment and other parameters unchanged.
 • **163.54251**

2. Consider the problem statement in 'Surface Water Hydraulics: Unsteady 1D Channel Flow'. What is the maximum discharge (w.r.t. time) for at $x = 4000$ m from internal junction node in Channel reach 3 of the network. Use the code unsteady_1D_channel_network_with_reverse_cfg1.sci. Take time step as 50 and keep other parameters unchanged.
 • **163.97054**

3. Consider the problem statement in 'Surface Water Hydraulics: Unsteady 1D Channel Flow'. Use the code unsteady_1D_channel_network_with_reverse_cfg1.sci. Take the channel segment as 50 m and keep other parameters unchanged. Now what is the maximum discharge (w.r.t. time) for at $x = 4000$ m from internal junction node in Channel reach 3 of the network.
 • **163.55291**

4. Consider the problem statement in 'Surface Water Hydraulics: Unsteady 1D Channel Flow'. Use the code unsteady_1D_channel_network_with_reverse_cfg1.sci. Keep the channel segment and other parameters unchanged. Change both Preissmann scheme parameters (θ, ψ) to 0.75. Compare the hydrographs and depth variation.
 • For 0.75, the fluctuations reduce in the falling limb of hydrograph and depth curve

5. If both Preissmann scheme parameters (θ, ψ) are set as 1, the scheme becomes
 • Completely Implicit

6. For the lecture 'Surface Water Hydraulics: Unsteady 2D Surface Flow', the scheme used is
 • Conditionally stable
 • Conditionally unstable

7. For the Hardy-Cross problem, If the flow depth is reduced 10, what is discharge through pipe 3.
 • **0.0123384**