ASSIGNMENT 5

1. If the minimum principal stress is -7 MPa, find σ_x for the case of plane stress illustrated in figure 1.

![Figure 1](image1)

2. Find the angle which the principal stress axes make with the xy axes for the case of plane stress illustrated in figure 1.

3. For the state of stress $\sigma_x = -120$ MPa, $\sigma_y = 50$ MPa, $\tau_{xy} = 100$ MPa, find the stress components (normal stress components) on an element inclined at 30° to the xy axes as shown in figure 2.

![Figure 2](image2)
4. In figure 2 find the shear stress component.

5. A long, cylindrical pressure vessel with closed ends is to be made by rolling a strip of plastic of thickness \(t \) and width \(w \) into a helix and making a continuous fused joint, as illustrated in figure 3. It is desired to subject the fused joint to a tensile stress only 80 percent of the maximum in the parent plastic. What is the maximum allowable width \(w \) of the strip? For cylindrical vessel use the relationships.

\[
\sigma_0 = \frac{pr}{t} \\
\sigma_z = \frac{F}{(2\pi rt)} \text{ and shear stress } \tau_{0} = 0
\]
6. Find the principal stress directions if the stress at a point is the sum of the two states of stress illustrated in figure 4 (case a).

7. Find the principal stress directions if the stress at a point is the sum of the two states of stress illustrated in figure 4 (case b).
8. An open ended, thin walled cylinder, \(r = 25 \text{ cm} \) and \(t = 0.25 \text{ cm} \) is acted on by an internal pressure \(p \) and an axial force \(F \) in figure 5. Find the values of \(p \) and \(F \) acting in the following situation:

\[
\sigma_m = 100 \text{ MPa}, \quad \sigma_n = 30 \text{ MPa}, \quad \tau_{mn} = \? \]

For cylindrical vessel use the relationships.

\[
\sigma_0 = \frac{pr}{t} \\
\sigma_z = \frac{F}{2\pi rt} \text{ and shear stress } \tau_{\theta} = 0
\]

9. In figure 5 find the values of \(p \) and \(F \) acting in the following situation:

\[
\sigma_m = 100 \text{ MN/m}^2, \quad \sigma_n = 100 \text{ MN/m}^2, \quad \tau_{mn} = \?
\]