Week 6: Assignment 6

The next data in numbering this assignment begins.

Due on 2020-08-20, 23:59 IST.

Course Outline
What to do in OPT for this week?

Week 5: Preparatory

Week 4: Linear Algebra

Week 3: Graph Theory

Week 2: Graph Algorithms

Week 1: Computational Graphs

Course Notes

Week 6: Assignment 6

1. Consider the following problem: For any graph $G=(V,E)$, find the minimum cut.
 - Use matrices to represent the graph.
 - Find the minimum cut.

2. Consider the following problem: Given a directed graph $G=(V,E)$, find the shortest path from s to t.
 - Use Dijkstra's algorithm to find the shortest path.

3. Consider the following problem: Given a weighted graph $G=(V,E)$, find the minimum spanning tree.
 - Use Prim's algorithm to find the minimum spanning tree.

4. Consider the following problem: Given a weighted graph $G=(V,E)$, find the maximum flow.
 - Use the Ford-Fulkerson algorithm to find the maximum flow.

5. Consider the following problem: Given a weighted graph $G=(V,E)$, determine if there is a cycle.
 - Use the Bellman-Ford algorithm to determine if there is a cycle.

6. Consider the following problem: Given a weighted graph $G=(V,E)$, find the shortest path from s to t.
 - Use the Dijkstra's algorithm to find the shortest path.

7. Consider the following problem: Given a weighted graph $G=(V,E)$, find the minimum spanning tree.
 - Use the Prim's algorithm to find the minimum spanning tree.

8. Consider the following problem: Given a weighted graph $G=(V,E)$, find the maximum flow.
 - Use the Ford-Fulkerson algorithm to find the maximum flow.

9. Consider the following problem: Given a weighted graph $G=(V,E)$, determine if there is a cycle.
 - Use the Bellman-Ford algorithm to determine if there is a cycle.

10. Consider the following problem: Given a weighted graph $G=(V,E)$, find the shortest path from s to t.
 - Use the Dijkstra's algorithm to find the shortest path.

11. Consider the following problem: Given a weighted graph $G=(V,E)$, find the minimum spanning tree.
 - Use the Prim's algorithm to find the minimum spanning tree.

12. Consider the following problem: Given a weighted graph $G=(V,E)$, find the maximum flow.
 - Use the Ford-Fulkerson algorithm to find the maximum flow.

13. Consider the following problem: Given a weighted graph $G=(V,E)$, determine if there is a cycle.
 - Use the Bellman-Ford algorithm to determine if there is a cycle.

14. Consider the following problem: Given a weighted graph $G=(V,E)$, find the shortest path from s to t.
 - Use the Dijkstra's algorithm to find the shortest path.

15. Consider the following problem: Given a weighted graph $G=(V,E)$, find the minimum spanning tree.
 - Use the Prim's algorithm to find the minimum spanning tree.

16. Consider the following problem: Given a weighted graph $G=(V,E)$, find the maximum flow.
 - Use the Ford-Fulkerson algorithm to find the maximum flow.

17. Consider the following problem: Given a weighted graph $G=(V,E)$, determine if there is a cycle.
 - Use the Bellman-Ford algorithm to determine if there is a cycle.

18. Consider the following problem: Given a weighted graph $G=(V,E)$, find the shortest path from s to t.
 - Use the Dijkstra's algorithm to find the shortest path.

19. Consider the following problem: Given a weighted graph $G=(V,E)$, find the minimum spanning tree.
 - Use the Prim's algorithm to find the minimum spanning tree.

20. Consider the following problem: Given a weighted graph $G=(V,E)$, find the maximum flow.
 - Use the Ford-Fulkerson algorithm to find the maximum flow.

21. Consider the following problem: Given a weighted graph $G=(V,E)$, determine if there is a cycle.
 - Use the Bellman-Ford algorithm to determine if there is a cycle.

22. Consider the following problem: Given a weighted graph $G=(V,E)$, find the shortest path from s to t.
 - Use the Dijkstra's algorithm to find the shortest path.

23. Consider the following problem: Given a weighted graph $G=(V,E)$, find the minimum spanning tree.
 - Use the Prim's algorithm to find the minimum spanning tree.

24. Consider the following problem: Given a weighted graph $G=(V,E)$, find the maximum flow.
 - Use the Ford-Fulkerson algorithm to find the maximum flow.

25. Consider the following problem: Given a weighted graph $G=(V,E)$, determine if there is a cycle.
 - Use the Bellman-Ford algorithm to determine if there is a cycle.

26. Consider the following problem: Given a weighted graph $G=(V,E)$, find the shortest path from s to t.
 - Use the Dijkstra's algorithm to find the shortest path.

27. Consider the following problem: Given a weighted graph $G=(V,E)$, find the minimum spanning tree.
 - Use the Prim's algorithm to find the minimum spanning tree.

28. Consider the following problem: Given a weighted graph $G=(V,E)$, find the maximum flow.
 - Use the Ford-Fulkerson algorithm to find the maximum flow.

29. Consider the following problem: Given a weighted graph $G=(V,E)$, determine if there is a cycle.
 - Use the Bellman-Ford algorithm to determine if there is a cycle.

30. Consider the following problem: Given a weighted graph $G=(V,E)$, find the shortest path from s to t.
 - Use the Dijkstra's algorithm to find the shortest path.

31. Consider the following problem: Given a weighted graph $G=(V,E)$, find the minimum spanning tree.
 - Use the Prim's algorithm to find the minimum spanning tree.

32. Consider the following problem: Given a weighted graph $G=(V,E)$, find the maximum flow.
 - Use the Ford-Fulkerson algorithm to find the maximum flow.

33. Consider the following problem: Given a weighted graph $G=(V,E)$, determine if there is a cycle.
 - Use the Bellman-Ford algorithm to determine if there is a cycle.

34. Consider the following problem: Given a weighted graph $G=(V,E)$, find the shortest path from s to t.
 - Use the Dijkstra's algorithm to find the shortest path.

35. Consider the following problem: Given a weighted graph $G=(V,E)$, find the minimum spanning tree.
 - Use the Prim's algorithm to find the minimum spanning tree.

36. Consider the following problem: Given a weighted graph $G=(V,E)$, find the maximum flow.
 - Use the Ford-Fulkerson algorithm to find the maximum flow.

37. Consider the following problem: Given a weighted graph $G=(V,E)$, determine if there is a cycle.
 - Use the Bellman-Ford algorithm to determine if there is a cycle.

38. Consider the following problem: Given a weighted graph $G=(V,E)$, find the shortest path from s to t.
 - Use the Dijkstra's algorithm to find the shortest path.

39. Consider the following problem: Given a weighted graph $G=(V,E)$, find the minimum spanning tree.
 - Use the Prim's algorithm to find the minimum spanning tree.

40. Consider the following problem: Given a weighted graph $G=(V,E)$, find the maximum flow.
 - Use the Ford-Fulkerson algorithm to find the maximum flow.

41. Consider the following problem: Given a weighted graph $G=(V,E)$, determine if there is a cycle.
 - Use the Bellman-Ford algorithm to determine if there is a cycle.

42. Consider the following problem: Given a weighted graph $G=(V,E)$, find the shortest path from s to t.
 - Use the Dijkstra's algorithm to find the shortest path.

43. Consider the following problem: Given a weighted graph $G=(V,E)$, find the minimum spanning tree.
 - Use the Prim's algorithm to find the minimum spanning tree.

44. Consider the following problem: Given a weighted graph $G=(V,E)$, find the maximum flow.
 - Use the Ford-Fulkerson algorithm to find the maximum flow.

45. Consider the following problem: Given a weighted graph $G=(V,E)$, determine if there is a cycle.
 - Use the Bellman-Ford algorithm to determine if there is a cycle.

46. Consider the following problem: Given a weighted graph $G=(V,E)$, find the shortest path from s to t.
 - Use the Dijkstra's algorithm to find the shortest path.

47. Consider the following problem: Given a weighted graph $G=(V,E)$, find the minimum spanning tree.
 - Use the Prim's algorithm to find the minimum spanning tree.

48. Consider the following problem: Given a weighted graph $G=(V,E)$, find the maximum flow.
 - Use the Ford-Fulkerson algorithm to find the maximum flow.

49. Consider the following problem: Given a weighted graph $G=(V,E)$, determine if there is a cycle.
 - Use the Bellman-Ford algorithm to determine if there is a cycle.

50. Consider the following problem: Given a weighted graph $G=(V,E)$, find the shortest path from s to t.
 - Use the Dijkstra's algorithm to find the shortest path.