Week 1 Assignment 1

Due on 2020-09-30, 23:59 IST

1. If 12C is an NMR nucleus, which of the following statements is correct?
 - It has odd number of protons and odd number of neutrons
 - It has even number of protons and even number of neutrons
 - It has even number of protons and odd number of neutrons
 - It has even number of protons and even number of neutrons (Correct)
 - It has even number of electrons
 - No, the answer is incorrect
 Score: 6
 Accepted Answers:
 - It has even number of protons and even number of neutrons

2. The γ transition is spin $\frac{3}{2}$. Its magnetic quantum numbers are
 - $m = -\frac{3}{2}, -\frac{1}{2}, \frac{1}{2}, \frac{3}{2}$
 - $m = -1, 0, 1$
 - $m = 0, 1, 2$
 - $m = 1, 0, -1$
 - No, the answer is incorrect
 - No, the answer is incorrect
 Score: 5
 Accepted Answers:
 - $m = -\frac{3}{2}, -\frac{1}{2}, \frac{1}{2}, \frac{3}{2}$

3. For spin $\frac{1}{2}$ nuclei, the direction of orientations of Spin Angular momentum with respect to magnetic field are
 - $+\frac{1}{2}$, $-\frac{1}{2}$
 - $+\frac{3}{2}$, $-\frac{3}{2}$
 - $+\frac{1}{2}$, $-\frac{1}{2}$, $+\frac{3}{2}$, $-\frac{3}{2}$
 - $+\frac{1}{2}$, $-\frac{1}{2}$, $+\frac{3}{2}$, $-\frac{3}{2}$ (Correct)
 - No, the answer is incorrect
 - No, the answer is incorrect
 Score: 5
 Accepted Answers:
 - $+\frac{1}{2}$, $-\frac{1}{2}$, $+\frac{3}{2}$, $-\frac{3}{2}$

4. The value of gyromagnetic ratio
 - Increases linearly with the magnetic field
 - Is constant for a given nucleus
 - Depends on the number of atomic mass
 - All of the above (Correct)
 - No, the answer is incorrect
 Score: 5
 Accepted Answers:
 - All of the above

5. The spin quantum number and the magnetic quantum numbers of 1H and 1C are identical. If $m = -\frac{1}{2}$ and $m = -\frac{3}{2}$ and $m = -\frac{1}{2}$, what makes them different as far as NMR spectroscopy is concerned?
 - They have different number of electrons
 - Their gyromagnetic ratios are same
 - They have different gyromagnetic ratios
 - Because of all of the above reasons (Correct)
 - No, the answer is incorrect
 Score: 5
 Accepted Answers:
 - Because of all of the above reasons

6. 1H has spin $\frac{1}{2}$. The removal of degeneracy in the magnetic field leads to how many number of energy states?
 - Four
 - Seven
 - Six
 - None of the above (Correct)
 - No, the answer is incorrect
 Score: 5
 Accepted Answers:
 - None of the above

7. When magnetic moment (µ) interacts with the magnetic field (B), their interaction energy is given by [Note, both of them are vectors]
 - $\mu \times B$
 - $\mu \cdot B$
 - $\mu \cdot B_0$ (Correct)
 - $\mu \times B_0$
 - No, the answer is incorrect
 Score: 5
 Accepted Answers:
 - $\mu \cdot B_0$

8. The resonance frequency of the nuclear spin
 - Is independent of the External magnetic field strength
 - Has linear dependence with the external magnetic field strength
 - Does not change with the magnetic field
 - Depends on B_0^2 (Correct)
 - No, the answer is incorrect
 Score: 5
 Accepted Answers:
 - B_0^2

9. According to Boltzmann equation of population ratio of different energy states, relative to other spectroscopic techniques
 - NMR spectroscopy is the highly sensitive technique
 - NMR is the most sensitive technique
 - Population ratio has no relevance to sensitivity
 - The population ratio and the sensitivity are inverse of each other (Correct)
 - No, the answer is incorrect
 Score: 5
 Accepted Answers:
 - The population ratio and the sensitivity are inverse of each other

10. The Larmor precession frequency of 13C in a magnetic field of 9.4 T is 100 MHz. If the magnetic field is increased to 10.0 T, what is the new precession frequency?
 - 95 MHz
 - 100 MHz
 - 105 MHz
 - 120 MHz (Correct)
 - No, the answer is incorrect
 Score: 5
 Accepted Answers:
 - 120 MHz