ourses » Introduction to Chemical Thermodynamics and Kinetics				
Jnit 4 - We	Announcements Course Ask a Question Progress FAQ			
Register for Certification exam	Assignment 2			
Course outline	The due date for submitting this assignment has passed. As per our records you have not submitted this assignment.			
How to access the portal	1) 10 moles of an ideal monoatomic gas initially at 10 atm and 27 ⁰ C is 1 pc allowed to expand isothermally against a constant pressure of 1 atm. Calculate the work done			
Week 0	work done.			
Week 1	-5364.9 calories			
Week 2	\sim -5.36.9 calories			
Introduction -	 - 500.0 calories 			
part 1	No, the answer is incorrect.			
Introduction - part 2	Score: 0			
Lecture 02 notes	Accepted Answers: -5364.9 calories			
Quiz : Assignment 2	2) What will be the work done in question 1 if the gas expands isothermally 1 po and reversibly until the pressure becomes 1 atm.			
Week 2 feedback form	-13.183 calories			
Assignment	-137 calories			
Solution				
Week 3	No the answer is incorrect			
Week 4	Score: 0			
Week 5	Accepted Answers: -13728.183 calories			
	10,20,100 000000			
Week 6	3) One mole of an ideal gas initially at 10 atm and 27^0 C is allowed to expand 1 or			

© 2014 NPTEL - Privacy & Terms - Honor Code - FAQs -

Week 12	ce De	Score: 0 Accepted Answers:	
		Zero	
		4) Two moles of an ideal monoatomic gas is heated at constant pressure from 27^{0} C to 127^{0} C.Calculate the work done.	1 point
		-397.4 Calories	
		3000 calories	
		50 calories	Ch
		20 calories	<u>č</u>
		No, the answer is incorrect. Score: 0	R
		Accepted Answers: -397.4 Calories	F
		5) One mole of an ideal monoatomic gas at 27^0 C is allowed to expand into vacuum from 10 litre to 20 litre. What will be the work done?	1 point
		🔘 50 J	
		Zero	
		🔘 1000 Ј	
		🔘 288.32 J	
		No, the answer is incorrect.	
		Score: 0	
		Accepted Answers: Zero	
		6) Calculate the work needed for a bird of mass 120 g to fly to a height of 50 m from the surface of the Earth.	1 point
		1 00 I	
		5 9 I	
		6 9 J	
		80 J	
		No, the answer is incorrect. Score: 0	
		Accepted Answers: 59 J	
		7) The magnitude of work done (in Cal) when 1 mole of calcium carbonate decomposes at 1 atm and 1,000 K is:	1 point
		0 1,798	
		0 1,897	
		0 1,978	
		0 1,987	
		No, the answer is incorrect. Score: 0	
		Accepted Answers: 1,987	
		8) A piece of zinc of mass 10.0 g is dropped into a beaker of dilute hydrochloric acid. The work done by the system as a result of the reaction is (1 point given

the atmospheric pressure is 1.1 atm and the temperature 23°C)

🔘 271 J	
🔘 -376 J	
🔘 -577 J	
🔘 1000 Ј	
No, the answer is incorrect.	
Score: U	
Accepted Answers: -376 J	2

9) The magnitude of work done (in Cal) when one mole of water vaporizes at $1 po \log 100^{\circ}$ C and 1 atm is:

7.4115	
74.115	Ç.
741.15	- Provi
7,411.5	
No, the answer is incorrect.	
Score: 0	
Accepted Answers:	

741.15

10)A strip of magnesium of mass 15 g is dropped into a beaker of dilute **1** point hydrochloric acid. Calculate the work done by the system as a result of the reaction (the atmospheric pressure is 1.0 atm and the temperature 25°C)

🔍 -1.5 kJ				
🔘 -3.5 kJ				
🔘 1.5 kJ				
🔘 15 kJ				
No, the answer is incorrect Score: 0				
Accepted Answers: -1.5 kJ				

Previous Page

End

Introduction to Chemical Thermodynamics and ...

R
R
R
뮲