Assessment 14

The due date for submitting this assignment has passed. Due on 2017-03-24, 23:59 IST.

Submitted assignment

Chemistry I Introduction to Quantum Chemistry and Molecular Spectroscopy
Tutorial 14 by K. Mangala Sunder
Department of Chemistry, Indian Institute of Technology Madras

Assume speed of light to be 3 x 10^8 m.s^{-1}; Planck’s constant \(\hbar = 6.626 \times 10^{-34} \) J.s.
J.S. Boltzmann constant \(k_B = 1.38 \times 10^{-23} \) J.K^{-1}. 1 amu = 1.661 \times 10^{-27} \) kg.

1) The SI unit for the moment of inertia of a diatomic molecule is

- \(kg \)
- \(N \ m^{-1} \)
- \(kg \ m^2 \)
- \(Joule \)

No, the answer is incorrect.
Score: 0

Accepted Answers:
- \(kg \ m^2 \)

2) The rotational constant for a diatomic molecule is given by the formula (I is the moment of inertia about an axis passing through the centre of mass and perpendicular to the bond axis)

- \(\hbar^2 \ / 8\pi^2Ic \)
- \(\hbar \ / 8\pi^2IC \)
- \(\hbar IC \ / 8\pi^2 \)
- \(\hbar^2C \ / 8\pi^2I \)

No, the answer is incorrect.
Score: 0

Accepted Answers:
3) A symmetric top molecule has the following relation between its moment of inertia about the three principal axes which are mutually perpendicular to each other

- $I_x \neq I_y \neq I_z$
- $I_x = I_y \neq I_z$
- $I_x = I_z, I_z = 0$
- $I_x = I_y = I_z$

No, the answer is incorrect.
Score: 0
Accepted Answers:
$I_x = I_y \neq I_z$

4) Only one of the statements below is incorrect. Please identify.

- For a diatomic molecule there are two mutually perpendicular axes about which the moments of inertia is nonzero.
- For a diatomic molecule two of the three moments of inertia are equal and the third is very large.
- All three moments of inertia of a symmetric top molecule are nonzero.
- For a planar molecule, the sum of two of the moments of inertia is equal to the third.

No, the answer is incorrect.
Score: 0
Accepted Answers:
For a diatomic molecule two of the three moments of inertia are equal and the third is very large.

5) The molecule BF_3 is planar. The following statement is the correct statement.

- The sum of two moments of inertia about the principle axes is equal to the moment of inertia about the perpendicular axis.
- One of the moment of inertia is zero.
- All three moments of inertia are unequal.
- All three moments of inertia are equal.

No, the answer is incorrect.
Score: 0
Accepted Answers:
The sum of two moments of inertia about the principle axes is equal to the moment of inertia about the perpendicular axis.

6) The energy difference between successive rotational levels (J and $J+1$) in a rigid diatomic molecule (in terms of its rotational constant B) is

- $hcB(2J + 1)$
- $2hcBJ$
- $2hcB(J + 1)$
- $hcB(J + 1)$

No, the answer is incorrect.
Score: 0
Accepted Answers:
$2hcB(J + 1)$

7) The rotational levels of a rigid diatomic molecule with the quantum number J are
8) The rotational constants of the two molecules HCl and DCl (Deuterium chloride) are in the ratio, (assuming the equilibrium bond lengths to be the same)

\[
\frac{B_{H\text{Cl}}}{B_{D\text{Cl}}} = \frac{\mu_{H\text{Cl}}^2}{\mu_{D\text{Cl}}^2}
\]

\[
\frac{B_{H\text{Cl}}}{B_{D\text{Cl}}} = \frac{\mu_{D\text{Cl}}}{\mu_{H\text{Cl}}}
\]

\[
\frac{B_{H\text{Cl}}}{B_{D\text{Cl}}} = \frac{\mu_{H\text{Cl}}^2}{\mu_{D\text{Cl}}^2}
\]

\[
\frac{B_{H\text{Cl}}}{B_{D\text{Cl}}} = \frac{\mu_{D\text{Cl}}}{\mu_{H\text{Cl}}}
\]

No, the answer is incorrect.
Score: 0
Accepted Answers:
(2J+1) - fold degenerate
J- fold degenerate
Doubly degenerate except for the quantum number \(K \), projection of \(J \) onto an axis, equal to zero
nondegenerate

9) The rotational constant for a certain molecule is 1 cm\(^{-1}\). The ratio of the number of molecule in \(J=1 \) to \(J=2 \) states at 1K, \(\frac{N_2}{N_1} \) is

- 1
- 0.5
- 0.05
- 0.005

No, the answer is incorrect.
Score: 0
Accepted Answers:
0.005

10) A molecule with the formula \(AB_2 \) has a microwave spectrum with lines which are equidistant. The structure of the molecule is,

- Linear A-A-B
- Linear A-B-A
- Bent A-B-B
- Bent B-A-B

No, the answer is incorrect.
Score: 0
Accepted Answers:
Linear A-A-B