Unit 4 - Week 3: Special Functions

Assignment 3

1) A function $y(x)$ satisfies the following:
 $y(x) = -3$ for $-\infty < x < -1$
 $y(x) = 2$ for $-1 < x < 1$
 $y(x) = -1$ for $1 < x < \infty$
 This function is equal to

 $3h(x + 1) - 2h(x - 1)$
 $-3h(x + 1) + 2h(x - 1) - 2$
 $-3 + 5h(x + 1) - 3h(x - 1)$
 None of the above

 Accepted Answers:
 $-3 + 5h(x + 1) - 3h(x - 1)$

2) A function $y(x)$ satisfies the following:
 $y(x) = 2$ for $-\infty < x < -3$
 $y(x) = 1$ for $-3 < x < 0$
 $y(x) = -1$ for $0 < x < 1$
 $y(x) = 0$ for $1 < x < \infty$
 The derivative of this function is equal to

 $\delta(x + 3) + \delta(x) + \delta(1)$
 $3\delta(x + 3) - 2\delta(x) - \delta(1)$
 $2\delta(x + 3) + \delta(x) - \delta(1)$
 None of the above

 Accepted Answers:
 None of the above

3) The ratio of $\Gamma(7/2)$ to $\Gamma(1/2)$ is

 $\Gamma(7/2) = \frac{(7/2)(6/2)(5/2)(4/2)(3/2)(2/2)(1/2)}{1/2}$
 $\Gamma(1/2) = \sqrt{\pi}$
 Therefore, the ratio is

 $\frac{\Gamma(7/2)}{\Gamma(1/2)} = \frac{(7/2)(6/2)(5/2)(4/2)(3/2)(2/2)(1/2)}{\sqrt{\pi}}$

 1 point
4) The value of the integral $\int_{0}^{\infty} x^3 e^{-x^2} dx$ is

- $\sqrt{\pi}/2$
- $\sqrt{\pi}/4$
- $1/16$
- None of the above

Accepted Answers:
15/8

5) The correct statement about error function, $\text{erf}(x)$, below is

- $\text{erf}(x) > 0$ for all $x \geq 0$
- $\text{erf}(x)$ is an increasing function of x for $0 < x < \infty$.
- $\text{erf}(x)$ is not a continuous function of x for $0 < x < \infty$
- None of the above

Accepted Answers:
None of the above

6) The ranges of values of the spherical polar coordinates r, θ, ϕ are

- $-\infty < r < \infty$, $0 \leq \theta < \pi$, $0 \leq \phi < 2\pi$
- $0 \leq r < \infty$, $0 \leq \theta < \pi$, $0 \leq \phi < 2\pi$
- $-\infty < r < \infty$, $0 \leq \theta < 2\pi$, $0 \leq \phi < 2\pi$
- None of the above

Accepted Answers:
$0 \leq r < \infty$, $0 \leq \theta < \pi$, $0 \leq \phi < 2\pi$

7) The ranges of values of the cylindrical polar coordinates ρ, θ, z are

- $-\infty < \rho < \infty$, $0 \leq \theta < \pi$, $-\infty < z < \infty$
- $0 \leq \rho < \infty$, $0 \leq \theta < 2\pi$, $0 \leq z < \infty$
- $0 \leq \rho < \infty$, $0 \leq \theta < 2\pi$, $0 \leq z < \infty$
Advanced Mathematical Methods for Chemistry - Unit 4 - Week 3: Special Functions

8) The partial derivative of the spherical polar coordinate \(\phi \) with respect to the cartesian coordinate \(x \), denoted by \(\left(\frac{\partial \phi}{\partial x} \right)_{y,z} \), is equal to

- \(\frac{y}{x^2+y^2} \)
- \(-\frac{1}{y} \)
- \(\frac{x}{r^2} \)

None of the above

9) According to kinetic theory of gases, the probability that the absolute value of the \(x \)-component of the velocity, \(|v_x| < \sqrt{2kBT/m} \), is

- \(\text{Erf}(1) \)
- \(\text{Erf}(\sqrt{2}) \)
- \(\text{Erf}(2) \)
- None of the above

10) A certain probability distribution in spherical polar coordinates is given by \(P(r, \theta, \phi) = Nr^2 \cos^2(\theta) e^{-r} \). The value of \(N \) so that this distribution is normalized is

- \(1/8\pi \)
- \(1/16\pi \)
- \(1/32\pi \)
- None of the above

Accepted Answers:
- \(1/32\pi \)