Unit 10 - Week 9

Assignment 9

Due on 2019-10-30, 23:59:45 IST.

1. A new optical phenomenological model to predict and calculate quenching, the effect of increasing temperature on Y, and Y, respectively.

2. When the temperature increases, the quenching effect decreases.

3. When the temperature decreases, the quenching effect increases.

4.

5. When the temperature increases, the quenching effect decreases.

6. When the temperature increases, the quenching effect increases.

7. When the temperature increases, the quenching effect increases.

8. When the temperature increases, the quenching effect decreases.

9. The integrated first order rate equation, in terms of the fluorescence spectroscopic signals X, Y, and Z, at time t1 and t2, respectively:

 \[
 \frac{X_{t1}}{X_{t2}} = \exp \left(-k_{q} \tau \right) \]

 \[
 \frac{Y_{t1}}{Y_{t2}} = \exp \left(-k_{q} \tau \right) \]

 \[
 \frac{Z_{t1}}{Z_{t2}} = \exp \left(-k_{q} \tau \right) \]

Accepted Answer:

1. Energy transfer efficiency when increased fluorescence intensity of donor in presence and absence of acceptor are 5.0 and 5.5 respectively.

2. Energy transfer efficiency when increased fluorescence intensity of donor in presence and absence of acceptor are 5.0 and 5.5 respectively.

3. Energy transfer efficiency when increased fluorescence intensity of donor in presence and absence of acceptor are 5.0 and 5.5 respectively.

4. Energy transfer efficiency when increased fluorescence intensity of donor in presence and absence of acceptor are 5.0 and 5.5 respectively.

5. Energy transfer efficiency when increased fluorescence intensity of donor in presence and absence of acceptor are 5.0 and 5.5 respectively.

6. Energy transfer efficiency when increased fluorescence intensity of donor in presence and absence of acceptor are 5.0 and 5.5 respectively.

7. Energy transfer efficiency when increased fluorescence intensity of donor in presence and absence of acceptor are 5.0 and 5.5 respectively.

8. Energy transfer efficiency when increased fluorescence intensity of donor in presence and absence of acceptor are 5.0 and 5.5 respectively.

9. Energy transfer efficiency when increased fluorescence intensity of donor in presence and absence of acceptor are 5.0 and 5.5 respectively.

10. Energy transfer efficiency when increased fluorescence intensity of donor in presence and absence of acceptor are 5.0 and 5.5 respectively.

11. Energy transfer efficiency when increased fluorescence intensity of donor in presence and absence of acceptor are 5.0 and 5.5 respectively.

12. Energy transfer efficiency when increased fluorescence intensity of donor in presence and absence of acceptor are 5.0 and 5.5 respectively.

13. Energy transfer efficiency when increased fluorescence intensity of donor in presence and absence of acceptor are 5.0 and 5.5 respectively.

14. Energy transfer efficiency when increased fluorescence intensity of donor in presence and absence of acceptor are 5.0 and 5.5 respectively.

15. Energy transfer efficiency when increased fluorescence intensity of donor in presence and absence of acceptor are 5.0 and 5.5 respectively.

16. Energy transfer efficiency when increased fluorescence intensity of donor in presence and absence of acceptor are 5.0 and 5.5 respectively.

17. Energy transfer efficiency when increased fluorescence intensity of donor in presence and absence of acceptor are 5.0 and 5.5 respectively.

18. Energy transfer efficiency when increased fluorescence intensity of donor in presence and absence of acceptor are 5.0 and 5.5 respectively.

19. Energy transfer efficiency when increased fluorescence intensity of donor in presence and absence of acceptor are 5.0 and 5.5 respectively.

20. Energy transfer efficiency when increased fluorescence intensity of donor in presence and absence of acceptor are 5.0 and 5.5 respectively.

21. Energy transfer efficiency when increased fluorescence intensity of donor in presence and absence of acceptor are 5.0 and 5.5 respectively.

22. Energy transfer efficiency when increased fluorescence intensity of donor in presence and absence of acceptor are 5.0 and 5.5 respectively.

23. Energy transfer efficiency when increased fluorescence intensity of donor in presence and absence of acceptor are 5.0 and 5.5 respectively.

24. Energy transfer efficiency when increased fluorescence intensity of donor in presence and absence of acceptor are 5.0 and 5.5 respectively.

25. Energy transfer efficiency when increased fluorescence intensity of donor in presence and absence of acceptor are 5.0 and 5.5 respectively.

26. Energy transfer efficiency when increased fluorescence intensity of donor in presence and absence of acceptor are 5.0 and 5.5 respectively.

27. Energy transfer efficiency when increased fluorescence intensity of donor in presence and absence of acceptor are 5.0 and 5.5 respectively.

28. Energy transfer efficiency when increased fluorescence intensity of donor in presence and absence of acceptor are 5.0 and 5.5 respectively.

29. Energy transfer efficiency when increased fluorescence intensity of donor in presence and absence of acceptor are 5.0 and 5.5 respectively.

30. Energy transfer efficiency when increased fluorescence intensity of donor in presence and absence of acceptor are 5.0 and 5.5 respectively.