Assignment 4

The student is required to complete assignment 4 and submit it by the deadline.

1. The probability of radioactive decay of an atom is given as

\[P = \frac{1}{\lambda t} \]

where \(\lambda \) is the decay constant and \(t \) is the time. If the decay constant \(\lambda = 0.1 \) and time \(t = 5 \) seconds, what is the probability of decay?

2. The rate of a chemical reaction is given by \(R = k [A][B] \) where \(k \) is the rate constant, \([A] \) and \([B] \) are the concentrations of the reactants. If \(k = 0.01 \) M\(^{-1}\)s\(^{-1} \), \([A] = 0.5 \) M, and \([B] = 0.5 \) M, what is the rate of the reaction?

3. The efficiency of a solar cell is given by \(\eta = \frac{P_{out}}{P_{in}} \) where \(P_{out} \) is the power output and \(P_{in} \) is the power input. If the power output is 0.5 W and the power input is 1 W, what is the efficiency of the solar cell?

4. The magnetic field at a point is given by \(B = \frac{\mu_0 I}{2\pi r} \) where \(\mu_0 \) is the magnetic constant, \(I \) is the current, and \(r \) is the distance from the current. If \(\mu_0 = 4\pi \times 10^{-7} \) Tm/A, \(I = 1 \) A, and \(r = 1 \) m, what is the magnetic field at that point?

5. The electric field at a point is given by \(E = \frac{q}{4\pi \varepsilon_0 r^2} \) where \(q \) is the charge, \(\varepsilon_0 \) is the permittivity of free space, and \(r \) is the distance from the charge. If \(q = 1 \) C, \(\varepsilon_0 = 8.85 \times 10^{-12} \) F/m, and \(r = 1 \) m, what is the electric field at that point?