Assignment 8

The due date for submitting this assignment has passed.
As per our records you have not submitted this assignment.

1) If \(E_0(\phi) \) is the calculated value of energy for a system, while \(E_0 \) is the actual value of its energy, then, according to upper limit theorem,
 ○ \(E_0(\phi) \leq E_0 \)
 ○ \(E_0(\phi) = E_0 \)
 ○ \(E_0(\phi) = E_0 \)
 ○ \(E_0(\phi) \geq E_0 \)

No, the answer is Incorrect
Score: 0
Accepted Answers:
\(E_0(\phi) \geq E_0 \)

2) In variational treatment of a quantum mechanical problem.
 ○ the system should be close in energy to an exactly solvable system
 ○ the first step is to choose a trial function whose value can be changed by varying a parameter
 ○ large number of iterations lead to convergence towards the best possible value
 ○ greater number of parameters result in a poorer fit

No, the answer is Incorrect
Score: 0
Accepted Answers:
the first step is to choose a trial function whose value can be changed by varying a parameter
large number of iterations lead to convergence towards the best possible value

3) While proving variation theorem, the trial function is expressed as a linear combination of wavefunctions that are necessarily
 ○ normalized
 ○ orthogonal to each other
 ○ real
 ○ imaginary

No, the answer is Incorrect
Score: 0
Accepted Answers:
normalized
orthogonal to each other

4) Other than \(\cos \lambda x \), valid trial function[s] for the ground state of a harmonic oscillator could be
 ○ \(\tan \lambda x \)
 ○ \(\cos^{-1} \lambda x \)
 ○ \(\log \lambda x \)
 ○ \(e^{\lambda x} \)

No, the answer is Incorrect
Score: 0
Accepted Answers:
\(e^{\lambda x} \)

5) Using as the trial function, the expected value of energy for the ground state of harmonic oscillator turns out to be
 \[E_{\text{min}} = \alpha \frac{\hbar}{2} \]
 The value of \(\alpha \) is ____________

Hint

No, the answer is Incorrect
Score: 0
Accepted Answers:
\(\alpha \frac{\hbar}{2} \)

6) For a particle in a box with infinitely large potential barriers at \(x = 0 \) and \(x = L \),
 let a trial function be \(\phi(x) = f(x), g(x) \). For this trial function to be valid, \(f(x) \) or \(g(x) \) can NOT be
 ○ \(x + 3 \)
 ○ \(3x \)
 ○ \(x^3 \)
 ○ \(x - L \)

No, the answer is Incorrect
Score: 0
Accepted Answers:
\(x + 3 \)

7) For a particle in a box, using the trial function \(\phi = c_1f_1 + c_2f_2 \), where \(f_1 = x(1-x), f_2 = x^2(1-x)^2 \), energy of the lowest energy level comes out to be \(\alpha \frac{\hbar}{m} \). Here, \(\alpha = ____________

Hint

No, the answer is Incorrect
Score: 0
Accepted Answers:
\(\alpha \frac{\hbar}{m} \)