Assignment 4

The due date for submitting this assignment has passed.
As per our record, you have not submitted this assignment.

1. The correct relationship connecting Cartesian coordinates x and y, and spherical polar coordinates r, θ, ϕ is $r = \square$.
 Accepted Answers
 $r = \sqrt{x^2 + y^2}$

2. Periodic boundary condition, used for the ϕ-dependent part of Schroedinger equation for a rigid rotor, builds upon the requirement of wavefunctions to be
 - continuous
 - normalized
 - single valued
 - orthogonal to each other
 Accepted Answers
 continuous

3. Motion causing change in ϕ must require to be taken into consideration for operators L_x, L_y, L_z.
 Accepted Answers
 L_x, L_y, L_z

4. ϕ-dependent part of the rotational wavefunction is
 - real
 - imaginary
 - an exponential function
 - a polynomial
 Accepted Answers
 imaginary

5. The polynomial functions in rotational wavefunction bear the name of
 - Hermite
 - Lagrange
 - de Bicyle
 - Legendre
 Accepted Answers
 Legendre

6. Degeneracy of 2D rotational levels is ______ fold
 Accepted Answers
 2

7. e_j is the energy, in cm$^{-1}$, for the rotational level with quantum number J. If \(\frac{\text{Rydberg constant}}{e_j} = 125 \), then $J = \square$
 Accepted Answers
 $J = 125$

8. In a polar plot,
 - the range of angles is 0-360$^\circ$, for ρ as well as ϕ
 - value of the plotted function of angle is represented by the distance from origin
 - sign of the function is shown by putting in the opposite role of the curve
 - a cusp is obtained when the function is constant with respect to ϕ and ρ is the independent variable
 Accepted Answers
 Legendre

9. $\mathbf{L}_j = \left(\begin{array}{c} L_x \\ L_y \\ L_z \end{array} \right) = \left(\begin{array}{ccc} J & 0 & 0 \\ 0 & -J & 0 \\ 0 & 0 & -J \end{array} \right) \mathbf{\hat{r}}$
 Accepted Answers
 Legendre

10. Properties that can be determined simultaneously are
 - L_x, L_y, L_z
 - L_x, L_y
 - L_x, L_y, L_z
 - L_x, L_y, L_z
 Accepted Answers
 Legendre