Х

(https://swayam.gov.in/nc_details/NPTEL)

reviewer4@nptel.iitm.ac.in ~

NPTEL (https://swayam.gov.in/explorer?ncCode=NPTEL) » Basics in Inorganic Chemistry (course)

Announcements (announcements) About the Course (https://swayam.gov.in/nd1_noc20_cy03/preview)

Ask a Question (forum) Progress (student/home) Mentor (student/mentor)

Unit 3 - Week 1

Course outline

How does an NPTEL online course work?

Week 0

Week 1

 Lecture 1 : Concept of Effective Nuclear Charge (unit? unit=1&lesson=3)

 Lecture 2 : Electronic Configuration of Elements (unit? unit=1&lesson=4)

 Lecture 3 : Properties of Elements (Size, IE, EA and EN) (unit? unit=1&lesson=5)

 Lecture 4 : Extraction of Metals (unit? unit=1&lesson=6)

Quiz : Week 1 : Assignment 1

Week 1 : Assignment 1

The due date for submitting this assignment has passed. Due on 2020-02-12, 23:59 IST. As per our records you have not submitted this assignment.

1) Which of the following configurations would you expect to have the highest second **1** point ionization energy?

\bigcirc	$1s^{2}2s^{2}$
\bigcirc	$1s^{2}2s^{2}2p^{4}$
\bigcirc	$1s^{2}2s^{2}2p^{6}3s^{1}$
\bigcirc	$1s^22s^22p^1$

No, the answer is incorrect. Score: 0 Accepted Answers: $1s^22s^22p^63s^1$

2) Which one will be the correct order of electron affinity of halogens?

1 point

At < I < Br < F < CI
 At < I < Br < CI < F
 F < I < Br < At < CI
 At > I > Br > F < CI

No, the answer is incorrect. Score: 0 Accepted Answers:

At < I < Br < F < CI

3) According to modern periodic law, the physical and chemical properties of the element are **1 point** periodic function of their

Atomic number

Atomic weight

(assessment? name=32)	Atomic size	
O Download	Atomic volume	
Videos (unit? unit=1&lesson=58)	No, the answer is incorrect. Score: 0	
	Accepted Answers:	
Weekly Feedback (unit? unit=1&lesson=59)	4) All elements belonging to second period are	1 point
Wook 2	Normal elements	
Week 2	Transitional	
Week 3	Stable elements	
	Halogens	
VVEEK 4	No, the answer is incorrect.	
Text Transcripts	Accepted Answers: Normal elements	
	5) The correct order regarding the electronegativity of hybrid obital of carbon is:	1 point
	\bigcirc sp> sp ² > sp ³	
	\bigcirc sp <sp<sup>2> sp³</sp<sup>	
	\bigcirc sp <sp<sup>2< sp³</sp<sup>	
	\bigcirc sp> sp ² < sp ³	
	No, the answer is incorrect. Score: 0	
	Accepted Answers: $sp > sp^2 > sp^3$	
	6) Which one will be the correct electronic configuration for Cr?	1 point
	\odot [Ar]3d ⁴ 4s ²	
	$[Ar]3d^54s^2$	
	\bigcirc [Ne]3d ⁵ 4s ²	
	$[Ar]3d^54s^1$	
	No, the answer is incorrect. Score: 0	
	Accepted Answers: $[Ar]3d^54s^1$	
	7) Which statement is incorrect about the Slater's rule.	1 point
	An amount of 0.35 from each other electron within the same group except for the [19 where the other electron contributes only 0.30.	s] group,
	If the group is of the [ns, np] type, an amount of 0.85 from each electron with princip number (n–1), and an amount of 1.00 for each electron with principal quantum number	al quantum (n–2) or less.
	If the group is of the [d] or [f], type, an amount of 1.00 for each electron "closer" to the than the group.	ne nucleus
	All electrons in the higher principal shell contribute 0.75 to the shielding constant.	
	No, the answer is incorrect. Score: 0	
	Accepted Answers: All electrons in the higher principal shell contribute 0.75 to the shielding constant.	

8) Calculate the effective nuclear charge for the 4s electron of Fe atom which has the atomic **1** point number 26 and electronic configuration $1s^22s^22p^63s^23p^63d^64s^2$.

3.75
6.25
2.75
3.25

No, the answer is incorrect. Score: 0 Accepted Answers: 3.75

9) Calculate the effective nuclear charge for the 2p electron of F atom. (Atomic number of F is 9)

No, the answer is incorrect. Score: 0 Accepted Answers: (*Type: Numeric*) 5.20 (*Type: Numeric*) 5.2

1 point

10)Which one will be the correct increasing order of effective nuclear charge among the following **1** point elements

O, F, Ne, C, N

- O<F<Ne<C<N</p>
- C<N<O<F<Ne
- Ne>F<O<N<C</p>
- F<O<C<N<Ne

No, the answer is incorrect. Score: 0 Accepted Answers: *C*<*N*<*O*<*F*<*N*e