Solutions (Assignment Week-7)

A-1
At very high pressure, molecules are almost touching and hence repulsions are dominant. (B)

A-2
\(\beta \)-Easacity coefficient indicates extent of deviation of the gas from ideality. (D)

A-3
At very low pressure gases behave ideally, hence fugacity can be replaced by pressure. (B)

A-4
\[ds \geq \frac{dq}{T} \]
For irreversible change, \(ds > \frac{dq}{T} \)

Since \(dq = 0 \), \(\Delta S(\text{system}) > 0 \) and \(\Delta S(\text{surr}) = 0 \) (D)

A-5
\(\Delta G = \) Max now \(p-V \) work available from the system
\(\Delta A = \) Max work available from the system

\(\Delta A - \Delta G \) represents maximum expansion work obtainable from the system. (B)

A-6
Endothermic reactions are driven by increase in entropy of the system. (B)
By fundamental equation \(dU = TdS - pdV \)

\[
\left(\frac{\partial U}{\partial S} \right)_{T} = T \quad (A)
\]

\(dG = Vdp - SdT \)

\[
\left(\frac{\partial G}{\partial p} \right)_{T} = V \quad (B)
\]

If liquid interact more strongly, negative deviations from ideality are shown, (B)

With specific reference to Raoult's Law.

Adiabatic demagnetization is used to achieve extremely low temperature, (B)