Assignment 04

1. Helmholtz free energy F is related to the canonical partition function Q in 1 point.

 $F = -k_B T \ln Q

 $\therefore k_B T \ln Q = F$

 No. the answer is incorrect. Score 0

 Accepted Answers:
 - $F = -k_B T \ln Q$
 - $k_B T \ln Q = F$

2. Variance of energy is defined as 1 point.

 $\sigma^2 = \langle E^2 \rangle - \langle E \rangle^2

 No. the answer is incorrect. Score 0

 Accepted Answers:
 - $\sigma^2 = \langle E^2 \rangle - \langle E \rangle^2$
 - $\langle E^2 \rangle - \langle E \rangle^2$

3. Canonical ensemble is also known as ____ ensemble 1 point.

 No. the answer is incorrect. Score 0

 Accepted Answers:
 - N_V
 - $N_V T$
 - $N_V T^2$
 - μT

4. Variance of energy in canonical ensemble σ^2_E is related to the average energy $\langle E \rangle$ by the relation 1 point.

 $\sigma^2_E = \langle E^2 \rangle - \langle E \rangle^2

 No. the answer is incorrect. Score 0

 Accepted Answers:
 - $\sigma^2_E = \langle E^2 \rangle - \langle E \rangle^2$
 - $\langle E^2 \rangle - \langle E \rangle^2$

5. If the canonical partition function of a material is $\sum_q \exp(-\beta q)$ where β is an arbitrary constant and $\sum_q \exp(-\beta q) \leq 1$ energy variance is given as 1 point.

 $\sigma^2_E = 2 \sum q^2 \exp(-\beta q)

 No. the answer is incorrect. Score 0

 Accepted Answers:
 - $\sum q^2 \exp(-\beta q)$
 - $2 \sum q^2 \exp(-\beta q)$
 - $\sum q^2 \exp(-\beta q)$
 - $\sum q \exp(-\beta q)$

6. Partition function in the grand canonical ensemble is written as 1 point.

 $Z = \sum \exp(-\beta \mu n_i)

 No. the answer is incorrect. Score 0

 Accepted Answers:
 - $\sum \exp(-\beta \mu n_i)$
 - $\exp(-\beta \mu n_i)$
 - $\exp(-\beta \mu n_i) + \exp(-\beta \mu n_i)$
 - $\exp(-\beta \mu n_i)$

7. The Laplace's mediatrissa appearing in the grand canonical ensemble is related to the chemical potential μ as 1 point.

 $\exp(-\beta \mu n_i)

 No. the answer is incorrect. Score 0

 Accepted Answers:
 - $\exp(-\beta \mu n_i)$
 - μn_i
 - $\exp(-\beta \mu n_i)$
 - $\exp(-\beta \mu n_i)$

8. The variance of the number of molecules in the grand canonical ensemble is given as 1 point.

 $\sigma^2 = \langle n^2 \rangle - \langle n \rangle^2

 No. the answer is incorrect. Score 0

 Accepted Answers:
 - $\langle n^2 \rangle - \langle n \rangle^2$
 - $\langle n \rangle^2 - \langle n \rangle^2$
 - $\langle n^2 \rangle$
 - $\langle n \rangle$

9. The Gibbs free energy is defined in terms of the partition function of the isothermal-isobaric ensemble β as 1 point.

 $G = k_B T \ln Z

 - $k_B T \ln Z$
 - $k_B T^2 \ln Z$
 - $k_B T \beta Z$
 - None of the above

 No. the answer is incorrect. Score 0

 Accepted Answers:
 - $k_B T \ln Z$
 - $k_B T^2 \ln Z$
 - $k_B T \beta Z$
 - None of the above

10. It is related to the number of ways of distribution W is the microcanonical ensemble as 1 point.

 $G = \frac{1}{2} k_B T \ln W

 - $k_B T \ln W$
 - $k_B T \frac{1}{2} \ln W$
 - $\frac{1}{2} k_B T \ln W$
 - $\frac{1}{2} k_B T W$

 No. the answer is incorrect. Score 0

 Accepted Answers:
 - $\frac{1}{2} k_B T \ln W$
 - $k_B T \ln W$
 - $k_B T \frac{1}{2} \ln W$
 - $\frac{1}{2} k_B T W$