Week 8 Assignment
The due date for submitting this assignment has passed.
As per our records you have not submitted this assignment.

1) Given below is the spectral density function $\gamma_{vv}(\omega)$ of a stationary process $v[k]$

$$\gamma_{vv}(\omega) = \frac{1}{2\pi (1.81 + 1.8 \cos 2\omega)}.$$

Which of the following is an appropriate representation for $v[k]$ with $\sigma_v^2 = 1$?

a. $v[k] = \frac{1}{1 + 0.9q^{-2}} e[k]$

b. $v[k] = \frac{1}{1 - 0.9q^{-2}} e[k]$

c. $v[k] = \frac{1}{1 + 0.9q^{-1}} e[k]$

d. $v[k] = \frac{1}{1 - 0.9q^{-1}} e[k]$

No, the answer is incorrect.
Score: 0
Accepted Answers:

2) Which of the following best represents the filtering characteristics of the process $v[k]$ Question 1?

(a) [Diagram]

(b) [Diagram]

(c) [Diagram]

No, the answer is incorrect.
Score: 0
Accepted Answers:

3)
3. For the spectral density function of a stationary process \(v[k] \) given in Question 1, PACF of \(v[k] \) at lag \(l = 2 \) is __________.
 a. 0
 b. \(-0.9\)
 c. 0.9
 d. None of the above

 No, the answer is incorrect.
 Score: 0
 Accepted Answers:
 \(b \)

4. Consider the fluid level measurement example given in class. Suppose we change the assumed model to

 \[y[k] = c_1 + c_2 e[k], \quad e[k] \sim \mathcal{N}(0, \sigma^2_e) \]

 choosing a least squares optimization function, which one of the following statements are TRUE?
 a. \(c_1 \) can be estimated uniquely but \(c_2 \) cannot be
 b. \(c_2 \) can be estimated uniquely but \(c_1 \) cannot be
 c. Both \(c_1 \) and \(c_2 \) can be estimated uniquely
 d. Neither \(c_1 \) nor \(c_2 \) can be estimated uniquely

 No, the answer is incorrect.
 Score: 0
 Accepted Answers:
 \(a \)

5. Given a single observation \(y \) of an exponential white-noise process with p.d.f. \(f(y) = \) the log-likelihood function \(L(\theta = \lambda; y) \) is __________
 a. \(\lambda e^{-\lambda y} \)
 b. \(-\lambda y \)
 c. \(\log(y) - \lambda e^{-\lambda y} \)
 d. \(\log(\lambda) - \lambda y \)

 No, the answer is incorrect.
 Score: 0
 Accepted Answers:
 \(d \)
6. Suppose we re-define the parameter θ for the problem in Question 5 as $\theta = \frac{1}{\lambda}$, then the Fisher’s Information of θ contained in N observations of the exponential white noise process is ____________

 a. $I(\theta) = -N\theta^2$
 b. $I(\theta) = -N\lambda^2$
 c. $I(\theta) = \frac{N}{\lambda^2}$
 d. $I(\theta) = \frac{N}{\theta^2}$

 Accepted Answers:
 d

No, the answer is incorrect.
Score: 0

7. A constant signal of unknown amplitude A is observed by two different, but independent sensors whose variances are (known to be) σ^2 and $4\sigma^2$, respectively. Suppose a total of $N = N_1 + N_2$ observations, with N_1 and N_2 from sensor 1 and sensor 2, respectively, obtained. Given that $N_1, N_2 \geq 2$ (assume that sensor errors are Gaussian white), N_1 and N_2 such that the Fisher’s information (about A) in the appended data is maxized.

 a. $N_1 = N - 2, N_2 = 2$
 b. $N_1 = 2, N_2 = N - 2$
 c. $N_1 = N_2 = N/2$
 d. None of the above

 Accepted Answers:
 a

No, the answer is incorrect.
Score: 0

8. For a periodic random process with $N_p = 5$, which of the following statements is correct?

 a. $E(v[k+5] - v[k])^2 = 0$
 b. $\sigma_{v}[l+15] = \sigma_{v}[l]$
 c. $\sigma_{v}[10] = \sigma_{v}[0]$
 d. All of the above

 Accepted Answers:
 d

No, the answer is incorrect.
Score: 0
9. For the time series given in w8.q9.Rdata, suppose we estimate the p.s.d of \(v[k] \) by a time-series model and using the expression (i.e., Eq. 10 in course notes on spectral representations of random processes) for the p.s.d. Which is the appropriate sketch of the p.s.d?

![Sketches](image)

(a) ![Sketch](image) (b) ![Sketch](image) (c) ![Sketch](image)

No, the answer is incorrect.
Score: 0
Accepted Answers:
- a
- b
- c

10. Generate a single realization consists of \(N = 100 \) observations for the given MA(1) process and compute the sample mean.

\[v[k] = e[k] + 0.4e[k - 1], \quad e[k] \sim \mathcal{N}(0, 1) \]

Repeat this process for 10000 times. The variability of the sample mean is (approximate)

- a. 0.02
- b. 0.2
- c. 0.4
- d. 1

No, the answer is incorrect.
Score: 0
Accepted Answers:
- a