Assignment 4

Due on 2019-08-28, 20:59 IST.

1. Which of the following relations is not a Maxwell relation? (1 point)
 a) \[\sigma = \tau (\theta) \]
 b) \[\sigma = \Gamma (\theta) \]
 c) \[\sigma = \sigma (\theta) \]
 d) \[\sigma = \Gamma (\theta) \]

 Correct Answer: (c)

2. Consider the function \(z(x,y) \), its partial derivatives \(\left(\frac{\partial z}{\partial x} \right) \) and \(\left(\frac{\partial z}{\partial y} \right) \), and the total derivative \(\left(\frac{dz}{dx} \right) \). How do the magnitudes \((\Delta x) \) and \((\Delta y) \) and \((\Delta z) \) compare?

 Correct Answer: (c)

3. For the ideal gas equation of state \((\frac{pV}{R}) = 1 \), which of the following is the correct expression for the compressibility factor \(Z \)?

 Correct Answer: (a)

4. Which one represents the stability of the thermodynamic system? (1 point)
 a) \[\left(\frac{\partial^2 S}{\partial P \partial V} \right)_T = 0 \]
 b) \[\left(\frac{\partial^2 S}{\partial T \partial V} \right)_P = 0 \]
 c) \[\left(\frac{\partial^2 S}{\partial T \partial V} \right)_P \neq 0 \]
 d) \[\left(\frac{\partial^2 S}{\partial P \partial V} \right)_T \neq 0 \]

 Correct Answer: (b)

5. The isothermal compressibility \((\alpha) \) of a stable thermodynamic system is

 a) \(\alpha > 0 \)
 b) \(\alpha < 0 \)
 c) \(\alpha = 0 \)

 Correct Answer: (a)

6. Which of the following relations is true? (1 point)
 a) \[C_v = -\left(\frac{\partial U}{\partial T} \right)_V \]
 b) \[C_v = \left(\frac{\partial U}{\partial V} \right)_T \]
 c) \[C_v = -\left(\frac{\partial S}{\partial T} \right)_V \]
 d) \[C_v = \left(\frac{\partial U}{\partial T} \right)_V \]

 Correct Answer: (a)

7. Which of the following figure represents the Born diagram? (1 point)

 Correct Answer: (a)