Unit 8 - Week 6: Gaseous Mixtures and Fugacity

Assessment 6

Due on 2023-09-11, 23:59 IST.

1. Assume that species 1 and 2 in the mixture can be described by the equation of state

\[P = \frac{nRT}{V - nB} \]

The constant \(B \) for the mixture can be approximately described by mixing rule: \(B = B_1Y_1 + B_2Y_2 \)

- \(\frac{B}{B_1} \) and \(\frac{B}{B_2} \) are constants for the mixture equal to \(1 \) and \(2 \) respectively.

a. What is the fugacity coefficient of component \(1 \) of the mixture? \(\lambda_1 = ? \)

\[\lambda_1 = \frac{P}{P^*} = 1 \]

b. What is the fugacity coefficient of component \(2 \) of the mixture? \(\lambda_2 = ? \)

\[\lambda_2 = \frac{P}{P^*} = 1 \]

2. Assume that pure species 1 and 2 in the mixture can be described by

\[P = \frac{nRT}{V - nB} \]

If the constants \(B_1 \) and \(B_2 \) of pure species are \(0.05 \) and \(0.1 \) respectively, then what is the fugacity coefficient of each pure species? \(\lambda_{1p} = ? \) and \(\lambda_{2p} = ? \)

\[\lambda_{1p} = \frac{P}{P^*} = 1 \]

\[\lambda_{2p} = \frac{P}{P^*} = 1 \]

3. What is the fugacity in (mol) of a mixture of 70 mol% of ethylene \((\text{C}_2\text{H}_4)\) and 30 mol% of propylene \((\text{C}_3\text{H}_6)\) and what is the fugacity of each pure species? \(\lambda_{\text{C}_2\text{H}_4} = ? \) and \(\lambda_{\text{C}_3\text{H}_6} = ? \)

\[\lambda_{\text{C}_2\text{H}_4} = \frac{P}{P^*} = 1 \]

\[\lambda_{\text{C}_3\text{H}_6} = \frac{P}{P^*} = 1 \]

Download answers...