Unit 4 - Week 2: Estimation of Thermodynamic Properties

Assessment 2

The due date for submitting this assignment has passed. As per our records you have not submitted this assignment.

1. Estimated water at 72°C has vapor pressure of 6.5 kPa and fugacity of 2.7 kPa. At such conditions, liquid has a molar volume of 25 cm³/mol and vapor has a molar volume of 50 cm³/mol. Then what is fugacity of liquid at 72°C?

a) 10 kPa
b) 2.7 kPa
c) 30 kPa

d) No, the value is incorrect.

Assessment 2

2. The van der Waals constants for n-butane (1) and n-octane (2) are given as:

\[a_1 = 5.85 \times 10^{-5} \text{ Pa m}^6 \text{ mol}^{-2} \quad b_1 = 0.067 \text{ m}^3 \text{ mol}^{-1} \]

\[a_2 = 2.85 \times 10^{-5} \text{ Pa m}^6 \text{ mol}^{-2} \quad b_2 = 0.137 \text{ m}^3 \text{ mol}^{-1} \]

What are the van der Waals constants \(a \) and \(b \) for equilibrium molar volume of 1 mole at 1 atm and 30°C for:

a) liquid and vapor
b) vapor

Assessment 2

3. For a gas mixture, the appropriate equation of state is found to be

\[P = \frac{RT}{V} \]

where \(P \) is the pressure, \(R \) is the gas constant, \(T \) is the temperature, and \(V \) is the molar volume. The molar volume of this mixture at 10 bar and 75°C is:

a) 0.08 m³/mol
b) 0.12 m³/mol
c) 0.15 m³/mol

d) No, the value is incorrect.

Assessment 2

4. The constants for van der Waals equation

\[P = \frac{RT}{V-b} - \frac{n^2 a}{V(V-b)(V-2b)} \]

for n-butane (1) and its molar volume are given as:

\[a_1 = 5.85 \times 10^{-5} \text{ Pa m}^6 \text{ mol}^{-2} \quad b_1 = 0.067 \text{ m}^3 \text{ mol}^{-1} \]

\[a_2 = 2.85 \times 10^{-5} \text{ Pa m}^6 \text{ mol}^{-2} \quad b_2 = 0.137 \text{ m}^3 \text{ mol}^{-1} \]

For the mixture, the equilibrium molar volume is 0.032 m³/mol.

a) 1 atm
b) 3 atm

Assessment 2

5. A gas mixture consisting of 20% A, 50% B, and 30% C on molar basis, the fugacity coefficient of these is 0.5, 0.3, and 0.8 respectively. What is the fugacity of the mixture at 5 atm and 50°C?

a) 2 atm
b) 4 atm

Assessment 2

6. Calculate fugacity of water vapor at 30°C and 10 bar using Redlich-Kwong equation of state with constants \(a = 14.07 \text{ J m}^3 \text{ mol}^{-2} \) and \(b = 0.014 \text{ m}^3 \text{ mol}^{-1} \)

a) 2 atm
b) 4 atm

d) No, the value is incorrect.

Assessment 2

7. The fugacity of component A is larger at 220°C and 110°C, while the fugacity of component B is larger at 220°C and 110°C using Redlich-Kwong equation of state with constants \(a = 14.07 \text{ J m}^3 \text{ mol}^{-2} \) and \(b = 0.014 \text{ m}^3 \text{ mol}^{-1} \)

a) 2 atm
b) 4 atm

d) No, the value is incorrect.