Progress

Course outline

Week 0: Prerequisite

Week 2: Estimation of

Thermodynamic Properties

Properties from Volumetric

Lec 1: Thermodynamic

 Lec 2: Fugacity from Volumetric Data

 Lec 3: Fugacity from Volumetric Data – 2

O Quiz : Assessment 2

Lecture Notes: Week 2

Weekly feedback form for

Solution: Assignment 2

Week 3: Potential Energy

Functions and Intermolecular

Week 4: Molecular Theory of

Corresponding States

Week 5: Intermolecular Interactions and E.o.S

Week 6: Gaseous Mixtures

Week 7: Liquid Mixtures and

Week 8: Models for Activity Coefficients using Excess

Week 9: Vapour - Liquid

Week 10: Liquid - Liquid

Non-Ideal Systems

Non-Ideal Systems

Liquid Equilibria of

Systems

Systems

Equilibria of Multicomponent

Equilibria of Multicomponent

Week 11: Vapour - Liquid -

Multicomponent Non-Ideal

Week 12: Solid - Liquid Equilibria of Non-Ideal

Download Videos

and Fugacity

Gibbs Energy

Fugacity

week 2

Forces

course work?

Equilibria

Data

How does an NPTEL online

Week 1: Introduction of Phase

NPTEL » Advanced Thermodynamics

Unit 4 - Week 2: Estimation of Thermodynamic Properties

No, the answer is incorrect.

Accepted Answers:

Score: 0

101.29 bar

	9 IST.
 Saturated water at 327°C has vapour pressure of 8.6 MPa and fugacity of 6.7 MPa. At such conditions, liquid has a molar volume of 25 cm³/mol nd the vapour has a molar volume of 40 cm³/mol. Then what is fugacity at 10 MPa? 	6 poir
○ 4.36 MPa	
○ 8.51 MPa ○ 6.75 MPa	
○ 9.24 MPa	
No, the answer is incorrect. Score: 0	
Accepted Answers: 6.75 MPa	
2) The van der Waals constants for n-butane (1) and n-octane (2) are given as: = $1.3874 \text{ Pa} (\text{m}^3/\text{mol})^2$, $b_1 = 0.1163 \times 10^{-3} \text{ m}^3/\text{mol}$, $a_2 = 3.7890 \text{ Pa} (\text{m}^3/\text{mol})^2$ and $b_2 = 0.237 \times 10^{-3} \text{ m}^3/\text{mol}$. What are the van der Waals constants "a" and pulmolar mixture of n-butane and n-octane?	6 poir "b" for
$a = 2.4405 \text{ Pa } (\text{m}^3/\text{mol})^2, b = 0.1767 \times 10^{-3} \text{ m}^3/\text{mol}$	
$a = 5.4315 \text{ Pa } (\text{m}^3/\text{mol})^2, \ b = 2.1837 \times 10^{-6} \text{ m}^3/\text{mol}$ $a = 7.3985 \text{ Pa } (\text{m}^3/\text{mol})^2, \ b = 5.1315 \times 10^{-4} \text{ m}^3/\text{mol}$	
O a = 6.1767 Pa (m ³ /mol) ² , b = 3.2405×10^{-5} m ³ /mol No, the answer is incorrect.	
Score: 0 Accepted Answers:	
$a = 2.4405 Pa (m^3/mol)^2$, $b = 0.1767 \times 10^{-3} m^3/mol$	0 1
For a gaseous mixture, the appropriate equation of state is found to $P=rac{RT}{v-b}-rac{a}{v^2}$ (i.e., van der Waals equation) where constants "a"	6 poii
nd "b" are given as $a = 2.4405 \text{ Pa} (\text{m}^3/\text{mol})^2$ and $b = 0.1767 \times 10^{-3} \text{ m}^3/\text{mol}$. What is molar volume of this mixture at $P = 16$ bar and $T = 600$ K?	
○ 6.431×10 ⁻⁴ m³/mol ○ 2.781×10 ⁻³ m³/mol	
○ 5.634×10 ⁻⁶ m³/mol	
○ 8.529×10 ⁻⁹ m ³ /mol No, the answer is incorrect.	
Score: 0 Accepted Answers:	
2.781×10 ⁻³ m ³ /mol	6
For a gaseous mixture, the appropriate equation of state is found to $P = \frac{RT}{m-h} - \frac{a}{m^2}$ (i.e., van der Waals equation) where constants "a"	6 poi
$v-b$ v^2 and "b" are given as: $a = 2.4405 \text{Pa} (\text{m}^3/\text{mol})^2$ and $b = 0.1767 \times 10^{-3} \text{m}^3/\text{mol}$. What is the compressibility of this mixture at P = 16 bar and T = 600K?	
0.646	
○ 0.563 ○ 0.474	
O.892	
No, the answer is incorrect. Score: 0 Accepted Answers:	
0.892	
The constants for van der Waals equation $\mathbf{p} = \frac{RT}{2} = \frac{a}{a}$ for n-butane (1) and n-octane (2) are given as: $a_1 = 1.3874$ Pa $(m^3/mol)^2$ by $a_2 = 1.3874$ Pa $(m^3/mol)^2$ by $a_3 = 1.3874$ Pa $(m^3/mol)^2$ by $a_4 = 1.3874$ Pa $(m^3/mol)^2$	6 poi
The constants for van der Waals equation $P = \frac{RT}{v-b} - \frac{a}{v^2}$ for n-butane (1) and n-octane (2) are given as: $a_1 = 1.3874$ Pa (m³/mol)², $b_1 = 0.000$	
.1163×10 ⁻³ m ³ /mol, $a_2 = 3.7890$ Pa (m ³ /mol) ² and $b_2 = 0.237 \times 10^{-3}$ m ³ /mol. For their equimolar mixture, these constants are $a = 2.4405$ Pa (m ³ /mol) ² and .1767×10 ⁻³ m ³ /mol; and the molar volume of the mixture is 2.781×10^{-3} m ³ /mol. What is the fugacity of n-butane (1) at P = 16 bar and T = 600K?	b =
11.547 bar	
○ 7.677 bar ○ 4.246 bar	
○ 9.782 bar	
No, the answer is incorrect. Score: 0 Accepted Answers:	
7.677 bar	
The constants for van der Waals equation $P = \frac{RT}{v-b} - \frac{a}{v^2}$ for n-butane (1) and n-octane (2) are given as: $a_1 = 1.3874$ Pa (m³/mol)², $b_1 = \frac{RT}{v-b} = \frac{RT}{v-b}$	6 poir
$v-b$ v^2 0.1163×10 ⁻³ m³/mol, $a_2 = 3.7890$ Pa (m³/mol) ² and $b_2 = 0.237 \times 10^{-3}$ m³/mol. For their equimolar mixture, these constants are $a = 2.4405$ Pa (m³/mol) ² and	
1.1767×10 ⁻³ m ³ /mol; and the molar volume of the mixture is 2.781×10^{-3} m ³ /mol. What is the fugacity of n-octane (2) at P = 16 bar and T = 600K?	D =
○ 3.986 bar ○ 7.624 bar	
9.564 bar	
O 6.763 bar No, the answer is incorrect.	
Score: 0 Accepted Answers:	
6.763 bar	
7) PT a	
The constants for van der Waals equation $P = \frac{KT}{m} - \frac{\alpha}{m}$ for n-butane (1) and n-octane (2) are given as: $a_1 = 1.3874$ Pa $(m^3/mol)^2$, $b_1 = 1.3874$ Pa $(m^3/mol)^2$, $b_2 = 1.3874$ Pa $(m^3/mol)^2$, $b_3 = 1.3874$ Pa $(m^3/mol)^2$, $b_4 = 1.3874$ Pa $(m^3/mol)^2$	
The constants for van der Waals equation $P = \frac{RT}{v-b} - \frac{a}{v^2}$ for n-butane (1) and n-octane (2) are given as: $a_1 = 1.3874$ Pa $(m^3/mol)^2$, $b_1 = 1.3874$ Pa $(m^3/mol)^2$, $b_2 = 1.3874$ Pa $(m^3/mol)^2$, $b_3 = 1.3874$ Pa $(m^3/mol)^2$, $b_4 = 1.3874$ Pa $(m^3/mol)^2$, $b_5 = 1.3874$ Pa $(m^3/mol)^2$, $b_6 = 1.3874$ Pa $(m^3/mol)^2$, $b_7 = 1.3874$ Pa $(m^3/mol)^2$, $b_8 = 1.3874$ Pa $(m^3/mol)^2$, $b_9 = 1.3874$ Pa $(m^3/mol)^2$ Pa $(m^3/m$	
$1163 \times 10^{-3} \text{ m}^3/\text{mol}$, $a_2 = 3.7890 \text{ Pa}$ (m^3/mol) ² and $b_2 = 0.237 \times 10^{-3} \text{ m}^3/\text{mol}$. For their equimolar mixture, these constants are $a = 2.4405 \text{ Pa}$ (m^3/mol) ² and	
.1163×10 ⁻³ m ³ /mol, a ₂ = 3.7890 Pa (m ³ /mol) ² and b ₂ = 0.237×10 ⁻³ m ³ /mol. For their equimolar mixture, these constants are a = 2.4405 Pa (m ³ /mol) ² and .1767×10 ⁻³ m ³ /mol; and the molar volume of the mixture is 2.781×10 ⁻³ m ³ /mol. What is the fugacity of the mixture at P = 16 bar and T = 600K? 14.409 bar	
$.1163\times10^{-3}$ m ³ /mol, $a_2 = 3.7890$ Pa (m ³ /mol) ² and $b_2 = 0.237\times10^{-3}$ m ³ /mol. For their equimolar mixture, these constants are $a = 2.4405$ Pa (m ³ /mol) ² and $.1767\times10^{-3}$ m ³ /mol; and the molar volume of the mixture is 2.781×10^{-3} m ³ /mol. What is the fugacity of the mixture at P = 16 bar and T = 600K?	
.1163×10 ⁻³ m ³ /mol, a ₂ = 3.7890 Pa (m ³ /mol) ² and b ₂ = 0.237×10 ⁻³ m ³ /mol. For their equimolar mixture, these constants are a = 2.4405 Pa (m ³ /mol) ² and .1767×10 ⁻³ m ³ /mol; and the molar volume of the mixture is 2.781×10 ⁻³ m ³ /mol. What is the fugacity of the mixture at P = 16 bar and T = 600K? 14.409 bar 12.354 bar 10.526 bar 8.648 bar	
.1163×10 ⁻³ m³/mol, a ₂ = 3.7890 Pa (m³/mol) ² and b ₂ = 0.237×10 ⁻³ m³/mol. For their equimolar mixture, these constants are a = 2.4405 Pa (m³/mol) ² and .1767×10 ⁻³ m³/mol; and the molar volume of the mixture is 2.781×10 ⁻³ m³/mol. What is the fugacity of the mixture at P = 16 bar and T = 600K? 14.409 bar 12.354 bar 10.526 bar 8.648 bar No, the answer is incorrect. Score: 0	
.1163×10 ⁻³ m ³ /mol, a ₂ = 3.7890 Pa (m ³ /mol) ² and b ₂ = 0.237×10 ⁻³ m ³ /mol. For their equimolar mixture, these constants are a = 2.4405 Pa (m ³ /mol) ² and .1767×10 ⁻³ m ³ /mol; and the molar volume of the mixture is 2.781×10 ⁻³ m ³ /mol. What is the fugacity of the mixture at P = 16 bar and T = 600K? 14.409 bar 12.354 bar 10.526 bar 8.648 bar No, the answer is incorrect.	
.1163×10 ⁻³ m ³ /mol, a ₂ = 3.7890 Pa (m ³ /mol) ² and b ₂ = 0.237×10 ⁻³ m ³ /mol. For their equimolar mixture, these constants are a = 2.4405 Pa (m ³ /mol) ² and .1767×10 ⁻³ m ³ /mol; and the molar volume of the mixture is 2.781×10 ⁻³ m ³ /mol. What is the fugacity of the mixture at P = 16 bar and T = 600K? 14.409 bar 10.526 bar 8.648 bar No, the answer is incorrect. Score: 0 Accepted Answers: 14.409 bar 8) A gas mixture composing of 20% A, 35% B and 45% C on mole% basis, the fugacity	l b =
.1163×10 ⁻³ m³/mol, a ₂ = 3.7890 Pa (m³/mol) ² and b ₂ = 0.237×10 ⁻³ m³/mol. For their equimolar mixture, these constants are a = 2.4405 Pa (m³/mol) ² and .1767×10 ⁻³ m³/mol; and the molar volume of the mixture is 2.781×10 ⁻³ m³/mol. What is the fugacity of the mixture at P = 16 bar and T = 600K? 14.409 bar 10.526 bar 8.648 bar No, the answer is incorrect. Score: 0 Accepted Answers: 14.409 bar 8) A gas mixture composing of 20% A, 35% B and 45% C on mole% basis, the fugacity	l b =
.1163×10 ⁻³ m³/mol, a ₂ = 3.7890 Pa (m³/mol) ² and b ₂ = 0.237×10 ⁻³ m³/mol. For their equimolar mixture, these constants are a = 2.4405 Pa (m³/mol) ² and .1767×10 ⁻³ m³/mol; and the molar volume of the mixture is 2.781×10 ⁻³ m³/mol. What is the fugacity of the mixture at P = 16 bar and T = 600K? 14.409 bar 12.354 bar 10.526 bar 8.648 bar No, the answer is incorrect. Score: 0 Accepted Answers: 14.409 bar 8) A gas mixture composing of 20% A, 35% B and 45% C on mole% basis, the fugacity of the mixture at T = 398K and P = 6.08 MPa? 4.52 MPa 6.62 MPa	l b =
1.163×10 ⁻³ m³/mol, a ₂ = 3.7890 Pa (m³/mol)² and b ₂ = 0.237×10 ⁻³ m³/mol. For their equimolar mixture, these constants are a = 2.4405 Pa (m³/mol)² and 1.1767×10 ⁻³ m³/mol; and the molar volume of the mixture is 2.781×10 ⁻³ m³/mol. What is the fugacity of the mixture at P = 16 bar and T = 600K? 14.409 bar 12.354 bar 10.526 bar 8.648 bar No, the answer is incorrect. Score: 0 Accepted Answers: 14.409 bar 8) A gas mixture composing of 20% A, 35% B and 45% C on mole% basis, the fugacity on-efficient of these are 0.7, 0.6, and 0.9 respectively. What is the fugacity of the mixture at T = 398K and P = 6.08 MPa?	l b =
.1163×10 ⁻³ m ³ /mol, a ₂ = 3.7890 Pa (m ³ /mol) ² and b ₂ = 0.237×10 ⁻³ m ³ /mol. For their equimolar mixture, these constants are a = 2.4405 Pa (m ³ /mol) ² and .1767×10 ⁻³ m ³ /mol, and the molar volume of the mixture is 2.781×10 ⁻³ m ³ /mol. What is the fugacity of the mixture at P = 16 bar and T = 600K? 14.409 bar 12.354 bar 10.526 bar 8.648 bar No, the answer is incorrect. Score: 0 Accepted Answers: 14.409 bar 8) A gas mixture composing of 20% A, 35% B and 45% C on mole% basis, the fugacity or-efficient of these are 0.7, 0.6, and 0.9 respectively. What is the fugacity of the mixture at T = 398K and P = 6.08 MPa? 4.52 MPa 6.62 MPa 7.96 MPa 2.42 MPa No, the answer is incorrect. Score: 0	l b =
.1163×10 ⁻³ m ³ /mol, a ₂ = 3.7890 Pa (m ³ /mol) ² and b ₂ = 0.237×10 ⁻³ m ³ /mol. For their equimolar mixture, these constants are a = 2.4405 Pa (m ³ /mol) ² and .1767×10 ⁻³ m ³ /mol, and the molar volume of the mixture is 2.781×10 ⁻³ m ³ /mol. What is the fugacity of the mixture at P = 16 bar and T = 600K? 14.409 bar 12.354 bar 10.526 bar 8.648 bar No, the answer is incorrect. Score: 0 Accepted Answers: 14.409 bar 8) A gas mixture composing of 20% A, 35% B and 45% C on mole% basis, the fugacity of themixture at T = 398K and P = 6.08 MPa? 4.52 MPa 6.62 MPa 7.96 MPa 2.42 MPa No, the answer is incorrect.	l b =
.1163×10 ⁻³ m ³ /mol, a ₂ = 3.7890 Pa (m ³ /mol) ² and b ₂ = 0.237×10 ⁻³ m ³ /mol. For their equimolar mixture, these constants are a = 2.4405 Pa (m ³ /mol) ² and 1.767×10 ⁻³ m ³ /mol; and the molar volume of the mixture is 2.781×10 ⁻³ m ³ /mol. What is the fugacity of the mixture at P = 16 bar and T = 600K? 14.409 bar 12.354 bar 10.526 bar 8.648 bar No, the answer is incorrect. Score: 0 Accepted Answers: 14.409 bar 8) A gas mixture composing of 20% A, 35% B and 45% C on mole% basis, the fugacity of the mixture at T = 398K and P = 6.08 MPa? 4.52 MPa 6.62 MPa 7.96 MPa 2.42 MPa No, the answer is incorrect. Score: 0 Accepted Answers: 4.52 MPa 9) Calculate fugacity of water vapour at 320°C and 70 bar using Redlich-Kwong equation of state with constants a = 14.27 Pa K ^{1/2} m ⁶ /mol ² and b =	6 poir
1163×10 ⁻³ m ³ /mol, a ₂ = 3.7890 Pa (m ³ /mol) ² and b ₂ = 0.237×10 ⁻³ m ³ /mol. For their equimolar mixture, these constants are a = 2.4405 Pa (m ³ /mol) ² and 1.767×10 ⁻³ m ³ /mol; and the molar volume of the mixture is 2.781×10 ⁻³ m ³ /mol. What is the fugacity of the mixture at P = 16 bar and T = 600K? 14.409 bar 12.354 bar 10.526 bar 8.648 bar No, the answer is incorrect. Score: 0 Accepted Answers: 14.409 bar 8) A gas mixture composing of 20% A, 35% B and 45% C on mole% basis, the fugacity of the mixture at T = 398K and P = 6.08 MPa? 4.52 MPa 6.62 MPa 7.96 MPa 2.42 MPa No, the answer is incorrect. Score: 0 Accepted Answers: 150 MPa 9. Calculate fugacity of water vapour at 320°C and 70 bar using Redlich-Kwong equation of state with constants a = 14.27 Pa K ^{1/2} m ⁶ /mol ² and b = 11×10 ⁻⁵ m ³ /mol.	6 poi
1.1163×10 ⁻³ m ³ /mol, a ₂ = 3.7890 Pa (m ³ /mol) ² and b ₂ = 0.237×10 ⁻³ m ³ /mol. For their equimolar mixture, these constants are a = 2.4405 Pa (m ³ /mol) ² and 1.7767×10 ⁻³ m ³ /mol; and the molar volume of the mixture is 2.781×10 ⁻³ m ³ /mol. What is the fugacity of the mixture at P = 16 bar and T = 600K? 14.409 bar 12.354 bar 10.526 bar 8.648 bar No, the answer is incorrect. Score: 0 Accepted Answers: 14.409 bar 8) A gas mixture composing of 20% A, 35% B and 45% C on mole% basis, the fugacity of the mixture at T = 398K and P = 6.08 MPa? 4.52 MPa 6.62 MPa 7.96 MPa 2.42 MPa No, the answer is incorrect. Score: 0 Accepted Answers: 4.52 MPa 9) Calculate fugacity of water vapour at 320°C and 70 bar using Redlich-Kwong equation of state with constants a = 14.27 Pa K ^{1/2} m ⁶ /mol ² and b = 11×10 ⁻⁵ m ³ /mol. 88.45 bar 47.82 bar	6 poi
1.1163×10 ⁻³ m³/mol, a ₂ = 3.7890 Pa (m³/mol)² and b ₂ = 0.237×10 ⁻³ m³/mol. For their equimolar mixture, these constants are a = 2.4405 Pa (m³/mol)² and c.1767×10 ⁻³ m³/mol; and the molar volume of the mixture is 2.781×10 ⁻³ m³/mol. What is the fugacity of the mixture at P = 16 bar and T = 600K? 14.409 bar 12.354 bar 10.526 bar 8.648 bar No, the answer is incorrect. Score: 0 Accepted Answers: 14.409 bar 8) A gas mixture composing of 20% A, 35% B and 45% C on mole% basis, the fugacity of the mixture at T = 398K and P = 6.08 MPa? 4.52 MPa 6.62 MPa 7.96 MPa 2.42 MPa No, the answer is incorrect. Score: 0 Accepted Answers: 4.52 MPa 9) Calculate fugacity of water vapour at 320°C and 70 bar using Redlich-Kwong equation of state with constants a = 14.27 Pa K ^{1/2} m ⁶ /mol² and b = 11×10 ⁻⁶ m³/mol. 88.45 bar	6 poir
1.1163×10 ⁻³ m ³ /mol, a ₂ = 3.7890 Pa (m ³ /mol) ² and b ₂ = 0.237×10 ⁻³ m ³ /mol. For their equimolar mixture, these constants are a = 2.4405 Pa (m ³ /mol) ² and 1.7767×10 ⁻³ m ³ /mol; and the molar volume of the mixture is 2.781×10 ⁻³ m ³ /mol. What is the fugacity of the mixture at P = 16 bar and T = 600K? 14.409 bar 12.354 bar 10.526 bar 8.648 bar No, the answer is incorrect. Score: 0 Accepted Answers: 14.409 bar 8) A gas mixture composing of 20% A, 35% B and 45% C on mole% basis, the fugacity of the mixture at T = 398K and P = 6.08 MPa? 4.52 MPa 6.62 WPa 7.96 MPa 2.42 MPa No, the answer is incorrect. Score: 0 Accepted Answers: 4.52 MPa 9) Calculate fugacity of water vapour at 320°C and 70 bar using Redlich-Kwong equation of state with constants a = 14.27 Pa K ^{1/2} m ⁶ /mol ² and b = 11×10 ⁻⁶ m ³ /mol. 88.45 bar 7.0.31 bar No, the answer is incorrect.	6 poir
1.1163×10 ⁻³ m ³ /mol, a ₂ = 3.7890 Pa (m ³ /mol) ² and b ₂ = 0.237×10 ⁻³ m ³ /mol. For their equimolar mixture, these constants are a = 2.4405 Pa (m ³ /mol) ² and 1.767×10 ⁻³ m ³ /mol; and the molar volume of the mixture is 2.781×10 ⁻³ m ³ /mol. What is the fugacity of the mixture at P = 16 bar and T = 600K? 14.409 bar 12.354 bar 10.526 bar 8.648 bar No, the answer is incorrect. Score: 0 Accepted Answers: 14.409 bar 8) A gas mixture composing of 20% A, 35% B and 45% C on mole% basis, the fugacity of the mixture at T = 398K and P = 6.08 MPa? 4.52 MPa 6.62 MPa 7.96 MPa 2.42 MPa No, the answer is incorrect. Score: 0 No, the answer is incorrect. Score: 0 Accepted Answers: 4.52 MPa 9) Calculate fugacity of water vapour at 320°C and 70 bar using Redlich-Kwong equation of state with constants a = 14.27 Pa K ^{1/2} m ⁶ /mol ² and b = 11×10 ⁻⁶ m ³ /mol. 88.45 bar 4.7.82 bar 6.0.46 bar 7.0.31 bar No, the answer is incorrect. Score: 0 No, the answer is incorrect. Score: 0 Accepted Answers: 7.0.31 bar No, the answer is incorrect. Score: 0 No, the answer is incorrect. Score: 0 Accepted Answers:	6 poin
1.1163×10 ⁻³ m ³ /mol, a ₂ = 3.7890 Pa (m ³ /mol) ² and b ₂ = 0.237×10 ⁻³ m ³ /mol. For their equimolar mixture, these constants are a = 2.4405 Pa (m ³ /mol) ² and to 1.767×10 ⁻³ m ³ /mol, and the molar volume of the mixture is 2.781×10 ⁻³ m ³ /mol. What is the fugacity of the mixture at P = 16 bar and T = 600K? 14.409 bar 12.354 bar 10.526 bar 8.648 bar No, the answer is incorrect. Score: 0 Accepted Answers: 14.409 bar 8) A gas mixture composing of 20% A, 35% B and 45% C on mole% basis, the fugacity o-efficient of these are 0.7, 0.6, and 0.9 respectively. What is the fugacity of the mixture at T = 398K and P = 6.08 MPa? 4.52 MPa 6.62 MPa 7.96 MPa 2.42 MPa No, the answer is incorrect. Score: 0 No, the answer is incorrect. Score: 0 Calculate fugacity of water vapour at 320°C and 70 bar using Redlich-Kwong equation of state with constants a = 14.27 Pa K ^{1/2} m ⁶ /mol ² and b = 1.11×10° m ⁷ /mol. 8.45 bar 4.7.82 bar 6.0.46 bar 7.0.31 bar No, the answer is incorrect. Score: 0 Accepted Answers: 60.46 bar	6 poin
.1163×10 ⁻³ m ³ /mol, a ₂ = 3.7890 Pa (m ³ /mol) ² and b ₂ = 0.237×10 ⁻³ m ³ /mol. For their equimolar mixture, these constants are a = 2.4405 Pa (m ³ /mol) ² and .1767×10 ⁻³ m ³ /mol. What is the fugacity of the mixture at P = 16 bar and T = 600K? 14.409 bar 12.354 bar 10.526 bar 8.648 bar No, the answer is incorrect. Score: 0 Accepted Answers: 14.409 bar 8) A gas mixture composing of 20% A, 35% B and 45% C on mole% basis, the fugacity of the mixture at T = 398K and P = 6.08 MPa? 4.52 MPa 6.62 MPa 7.96 MPa 2.42 MPa No, the answer is incorrect. Score: 0 Accepted Answers: 4.782 bar 9) Calculate fugacity of water vapour at 320°C and 70 bar using Redlich-Kwong equation of state with constants a = 14.27 Pa K ^{1/2} m ⁵ /mol ² and b = 11.110° m ³ /mol. No, the answer is incorrect. Score: 0 Accepted Answers: 60.46 bar 70.31 bar No, the answer is incorrect. Score: 0 Accepted Answers: 60.46 bar 70.31 bar No, the answer is incorrect. Score: 0 Accepted Answers:	6 poir
1.1163×10 ⁻³ m ³ /mol, a ₂ = 3.7890 Pa (m ³ /mol) ² and b ₂ = 0.237×10 ⁻³ m ³ /mol. For their equimolar mixture, these constants are a = 2.4405 Pa (m ³ /mol) ² and 1.767×10 ⁻³ m ³ /mol, and the molar volume of the mixture is 2.781×10 ⁻³ m ³ /mol. What is the fugacity of the mixture at P = 16 bar and T = 600K? 1.4.409 bar 12.354 bar 10.526 bar 8.648 bar No, the answer is incorrect. Score: 0 Accepted Answers: 14.409 bar 8) A gas mixture composing of 20% A, 35% B and 45% C on mole% basis, the fugacity of the mixture at T = 398K and P = 6.08 MPa? 4.52 MPa 6.62 MPa 7.96 MPa 2.42 MPa No, the answer is incorrect. Score: 0 No, the answer is incorrect. Score: 0 Score 10 Score 20 Score 30	6 poir
1.1163×10 ⁻⁹ m ⁹ /mol, a ₂ = 3.7890 Pa (m ⁹ /mol) ² and b ₂ = 0.237×10 ⁻⁹ m ⁹ /mol. For their equimolar mixture, these constants are a = 2.4405 Pa (m ⁹ /mol) ² and 1.767×10 ⁻⁹ m ⁹ /mol; and the molar volume of the mixture is 2.781×10 ⁻⁹ m ⁹ /mol. What is the fugacity of the mixture at P = 16 bar and T = 600K? 14.409 bar 12.354 bar 10.526 bar 8.648 bar No, the answer is incorrect. Score: 0 Accepted Answers: 14.409 bar 8) A gas mixture composing of 20% A, 35% B and 45% C on mole% basis, the fugacity of officient of these are 0.7, 0.6, and 0.9 respectively. What is the fugacity of the mixture at T = 398K and P = 6.08 MPa? 4.52 MPa 6.62 MPa 7.96 MPa 2.42 MPa No, the answer is incorrect. Score: 0 Accepted Answers: 4.52 MPa 9) Calculate fugacity of water vapour at 320°C and 70 bar using Redlich-Kwong equation of state with constants a = 14.27 Pa K ^{1/2} m ⁸ /mol ² and b = 1.11×10 ⁻⁹ m ⁹ /mol. 88.45 bar 47.82 bar 6.0.46 bar No, the answer is incorrect. Score: 0 Accepted Answers: 60.46 bar 10) Calculate fugacity of compressed liquid water at 320°C and 170 bar using Redlich-Kwong equation of state with constants a = 14.27 Pa K ^{1/2} m ⁸ /mol ² and b = 2.11×10 ⁻⁹ m ⁹ /mol.	