Unit 3 - Week 1: Introduction to Phase Equilibria

Course outline

Week 1: Introduction to Phase Equilibria

1. Introduction to Phase Equilibria
2. General Introduction to Phase Equilibria
3. Introduction to Equilibrium Concepts
4. Phase Diagrams
5. Application of Phase Diagrams
6. Analysis of Phase Diagrams
7. Exercise: Analyzing Phase Diagrams

Assessment 1

1. Coefficient of volume expansion and the coefficient of compositional change.
 \[\alpha = \frac{1}{V} \text{ and } \alpha = \frac{1}{x} \]
 No, the phase is not in equilibrium.

2. Analysis of the phase diagram for the system.
 \[y = \text{composition of component } y \]
 No, the phase is not in equilibrium.

3. Equilibrium conditions for the system.
 \[y = \text{composition of component } y \]
 No, the phase is not in equilibrium.

4. Analysis of the phase diagram for the system.
 \[y = \text{composition of component } y \]
 No, the phase is not in equilibrium.

5. Analysis of the phase diagram for the system.
 \[y = \text{composition of component } y \]
 No, the phase is not in equilibrium.

6. Analysis of the phase diagram for the system.
 \[y = \text{composition of component } y \]
 No, the phase is not in equilibrium.

7. Analysis of the phase diagram for the system.
 \[y = \text{composition of component } y \]
 No, the phase is not in equilibrium.

8. Analysis of the phase diagram for the system.
 \[y = \text{composition of component } y \]
 No, the phase is not in equilibrium.

9. Analysis of the phase diagram for the system.
 \[y = \text{composition of component } y \]
 No, the phase is not in equilibrium.

10. Analysis of the phase diagram for the system.
 \[y = \text{composition of component } y \]
 No, the phase is not in equilibrium.

11. Analysis of the phase diagram for the system.
 \[y = \text{composition of component } y \]
 No, the phase is not in equilibrium.

12. Analysis of the phase diagram for the system.
 \[y = \text{composition of component } y \]
 No, the phase is not in equilibrium.