Unit 6 - Week 4: Interpretation of Batch Reactor Data

Assignment 4

The data for this assignment has been passed. As per our records you have not submitted this assignment.

1. What will be the rate expression for the following diagram?

 ![Diagram](image)

 \[
 \frac{d[X]}{dt} = k_1 [X] [Y] \]

 \[
 \frac{d[Y]}{dt} = k_2 [X] [Y] \]

 \[
 \frac{d[Z]}{dt} = k_3 [X] [Y] \]

 \[
 \frac{d[W]}{dt} = k_4 [X] [Y] \]

 a. \frac{d[Y]}{dt} = k_2 [X] [Y] \]

 b. \frac{d[Z]}{dt} = k_3 [X] [Y] \]

 c. \frac{d[W]}{dt} = k_4 [X] [Y] \]

 d. \frac{d[X]}{dt} = k_1 [X] [Y] \]

 No, the answer is incorrect.

 Accepted Answer:
 \[
 \frac{d[Y]}{dt} = k_2 [X] [Y] \]

 2. The rate equation for a reaction \(\ce{A + B \rightarrow C} \) is \(\frac{d[C]}{dt} = k_1 [A] [B] \). A plot of \(\frac{d[C]}{dt} \) versus \([C] \) gives a

 a. straight line with a steep \(\text{slope} \)

 b. straight line with a shallow \(\text{slope} \)

 c. parabola

 d. hyperbola

 No, the answer is incorrect.

 Accepted Answer:
 c. parabola

 3. If the following consecutive, irreversible, first-order, liquid phase reaction in a reactor involves a batch reactor \(\ce{A -> B -> C} \), where \(k_1 \) is in the reaction rate constant for first reaction and \(k_2 \) be the reaction rate constant for the second-order reaction. The rate of reaction of \(B \) can be written as

 a. \(\frac{d[B]}{dt} = k_1 [A] \]

 b. \(\frac{d[B]}{dt} = k_2 [B] \]

 c. \(\frac{d[B]}{dt} = k_1 [A] [B] \]

 d. \(\frac{d[B]}{dt} = k_2 [A] [B] \]

 No, the answer is incorrect.

 Accepted Answer:
 c. \(\frac{d[B]}{dt} = k_1 [A] [B] \)

 4. Consider the reversible reaction \(\ce{A \rightleftharpoons B} \). Both reactions are 1st order. If the equilibrium constant for the reaction at any temperature is \(K \), the equilibrium conversion is equal to

 a. \(\frac{K}{1+K} \]

 b. \(\frac{1}{K} \]

 c. \(\frac{K}{1} \]

 d. \(\frac{1}{K} \]

 No, the answer is incorrect.

 Accepted Answer:
 a. \(\frac{K}{1+K} \)

 5. Consider the reaction \(\ce{A \rightleftharpoons B} \) with \(\frac{d[A]}{dt} = k_2 [A] \). If the concentration of \(A \) is very high, then the reaction order and the rate constant will be

 a. \(2, k_2 \)

 b. \(1, k_1 \)

 c. \(1, k_2 \)

 d. \(3, k_2 \)

 No, the answer is incorrect.

 Accepted Answer:
 b. \(1, k_1 \)

 6. The following liquid phase reaction is taking place in an isothermal batch reactor

 \[
 \frac{d[B]}{dt} = k \]

 Feed concentration = 1 and after \(t_1 \) and after \(t_2 \) the rate of change of reaction from \([B]_0 \) is given by.

 a. \(\max(\text{rounded off to decimal places}) \)

 b. \(\min(\text{rounded off to decimal places}) \)

 No, the answer is incorrect.

 Accepted Answer:
 a. \(\max(\text{rounded off to decimal places}) \)

 7. A series reaction \(\ce{A \rightarrow B \rightarrow C} \) occurs in a batch reactor. Both the rate constants are equal i.e. \(k_1 = k_2 \). Initial concentration of \(A \) is 5 mol. The minimum concentration of \(B \) will be

 a. \(2.5 \text{ mol} \)

 b. \(3.5 \text{ mol} \)

 c. \(4.5 \text{ mol} \)

 d. \(5.5 \text{ mol} \)

 No, the answer is incorrect.

 Accepted Answer:
 c. \(4.5 \text{ mol} \)