Unit 15 - Week 12: Chemical Reaction Equilibrium

Assignment 12

The due date for submitting this assignment has passed. As per our records you have not submitted this assignment.

1) The standard enthalpy of formation ΔH_f° for NO (g) and NO₂ (g) are 90.3 and 3 kJ mol⁻¹ respectively. The standard enthalpy ΔH_f° of the following reaction in kJ is

$$2\text{NO(g)} + \text{O}_2(g) \rightleftharpoons 2\text{NO}_2(g)$$

No, the answer is incorrect.
Score: 0
Accepted Answers:
(Type: Range) -114.3, -114.1

5 points

2) The standard Gibbs' free energy of formation ΔG_f° for NO (g) and NO₂ (g) are 83 and 51.3 kJ mol⁻¹ respectively. The logarithm of the equilibrium constant (ln K) for the following reaction at 298 K is

$$2\text{NO(g)} + \text{O}_2(g) \rightleftharpoons 2\text{NO}_2(g)$$

No, the answer is incorrect.
Score: 0
Accepted Answers:
(Type: Range) 28.3, 30.3

5 points

3) Use the data given in questions 1 and 2. Assume that the enthalpy of the reaction is independent of the temperature. The value of the equilibrium constant for the follow...
4) Consider the following reactions occurring in a system CH₄ + H₂O → CO + 3H₂ and CH₄ + 2H₂O → CO₂ + 4H₂. 4 moles of methane and 6 moles of water are initially fed into the system. The reactions proceed and after certain time, 0.4 moles of CO and 0.2 moles of CO₂ are present in the system. The mole-fraction of hydrogen at this time is

No, the answer is incorrect.
Score: 0
Accepted Answers:
(Type: Range) 400,500

5) Consider the reaction CH₄ + H₂O → CO + 3H₂. At the start of the reaction the reactor charged with 10 moles. This feed mixture contained 2 moles of each of CH₄, H₂O, CO, H₂ and an inert, N₂. The mole-fraction of CO expressed in terms of the reaction coordinate ε is

No, the answer is incorrect.
Score: 0
Accepted Answers:

\[
\frac{2 + \varepsilon}{10 + 2\varepsilon}
\]