Interactomics: Basics and Application Assignment 8

The due date for submitting the assignment has passed. As per our policy, you may not submit this assignment.

Interaction Basics and Application, Assignment 8

1. What should be the optimal %X% for immunodetection of fusions? Is 85% from the given below results?
 - 90% X
 - 95% X
 - 110% X
 - No answer is incorrect.
 - Accepted Answers:
 - 90% X
 - 1 point

2. What is the best food spot residue present of P-Pi bin plate assay?
 - No, the answer is incorrect.
 - Accepted Answers:
 - None of the above
 - 1 point

3. Which of the following can be studied by Bioxyter interferometry system?
 - Promote protein interactions
 - Exactly state affinity
 - Activity phosphorylation in supernatant
 - All of the above
 - No answer is incorrect.
 - Accepted Answers:
 - 3 point
 - 1 point

4. Which is the out of Bioxyter interferometry system?
 - No reference value is required.
 - Label-free detection
 - Read the time
 - Predict secondary structure of the protein
 - No answer is incorrect.
 - Accepted Answers:
 - 4 point
 - 1 point

5. Which is the best way to measure the thickness of bioxyter interferometry?
 - No answer is incorrect.
 - Accepted Answers:
 - 1 point

6. What should be a good strategy to target on subscripts of fusion protein-Ptential interactions (PP)?
 - Targeting hot spots residues of FPI interfaces which can reduce the binding energy
 - Is impossible to target the protein-potential interaction as its structure is not known
 - Drug can help to target any changes in PPI surface
 - Both a and c
 - No answer is incorrect.
 - Accepted Answers:
 - 4 point
 - 1 point

7. What is the correct representation of data achieved from Bioxyter interferometry?
 - No answer is incorrect.
 - Accepted Answers:
 - 1 point

8. What are the 1,2,3 steps shown in given below schematic representation of data achieved from Bioxyter interferometry?
 - No answer is incorrect.
 - Accepted Answers:
 - 1 point

Unit 10 - Week 8

Course outline

How does on NETXL online course work?

Interactomics Week 8

Week 1

Week 2

Week 3

Week 4

Week 5

Week 6

Week 7

Week 8

- Lecture 20: Use of fluorescence resonance energy transfer (FRET) techniques in protein-protein interaction studies
- Lecture 21: Use of proteomics techniques in protein-protein interaction studies
- Lecture 22: Use of mass spectrometry techniques in protein-protein interaction studies
- Lecture 23: Use of yeast two-hybrid systems in protein-protein interaction studies
- Lecture 24: Use of bioinformatics tools for protein-protein interaction studies

Week 9

- Lecture 25: Use of yeast two-hybrid systems in protein-protein interaction studies
- Lecture 26: Use of proteomics techniques in protein-protein interaction studies
- Lecture 27: Use of mass spectrometry techniques in protein-protein interaction studies
- Lecture 28: Use of yeast two-hybrid systems in protein-protein interaction studies
- Lecture 29: Use of bioinformatics tools for protein-protein interaction studies

Week 10

- Lecture 30: Use of yeast two-hybrid systems in protein-protein interaction studies
- Lecture 31: Use of proteomics techniques in protein-protein interaction studies
- Lecture 32: Use of mass spectrometry techniques in protein-protein interaction studies

Week 11

- Lecture 33: Use of yeast two-hybrid systems in protein-protein interaction studies
- Lecture 34: Use of proteomics techniques in protein-protein interaction studies
- Lecture 35: Use of mass spectrometry techniques in protein-protein interaction studies

Week 12

- Lecture 36: Use of yeast two-hybrid systems in protein-protein interaction studies
- Lecture 37: Use of proteomics techniques in protein-protein interaction studies
- Lecture 38: Use of mass spectrometry techniques in protein-protein interaction studies

Announcements

About the Course

Ask a Question

Program

Mentor

resnet@gipsy.usc.ri Truyền

DUE 2023-03-03, 22:59 IST.