Unit 11 - Week 9: Assignment

1. The air foils in the diagram are representing an airplane wing. The lift force is acting perpendicular to the airflow, and the drag force is acting parallel to the airflow. The angle of attack determines the lift and drag forces. If the angle of attack is too large, the lift force may become negative, causing the aircraft to stall.

2. The diagram shows a propeller rotating in the airflow. The propeller generates thrust by converting the rotational energy into linear momentum. The thrust force is equal to the mass flow rate times the change in momentum per unit time. The propeller efficiency determines the fraction of the power input that is converted into useful thrust.

3. The diagram represents a jet engine. The pressure ratio determines the efficiency of the engine. The fan
classification system is based on the pressure ratio and the temperature ratio. The pressure ratio is the ratio of the static pressure at the exit of the compressor to the static pressure at the inlet, while the temperature ratio is the ratio of the exit temperature to the inlet temperature.

4. The diagram shows a rocket engine. The impulse is the product of the mass flow rate and the velocity change. The total impulse is the sum of the impulses for each component of the engine. The effective impulse is the impulse that is actually used to propel the vehicle.

5. The diagram represents the three main components of a rocket engine: The propellant, the combustion chamber, and the nozzle. The propellant is burned in the combustion chamber, producing hot gases that expand in the nozzle and exit the engine under high pressure. The nozzle is designed to accelerate the gases and maximize the thrust produced by the engine.

6. The diagram shows a rocket engine with a hydrogen-oxygen propellant system. The hydrogen and oxygen are stored in separate tanks and mixed in the combustion chamber. The reaction produces high-temperature and high-pressure gases that are directed through the nozzle to produce thrust. The exhaust gases are then released into the atmosphere.

7. The diagram represents a propellant injection system for a rocket engine. The propellant is injected into the combustion chamber through a series of nozzles. The injection system is designed to ensure proper mixing and distribution of the propellant to achieve optimal combustion.

8. The diagram shows a rocket engine with a regenerative cooling system. The cooling system is used to cool the engine components and reduce wear and tear. The cooling fluid is circulated through the engine components, absorbing heat and then returning to the coolant source.

9. The diagram represents a rocket engine with a gimbaled nozzle. The gimbaled nozzle allows the engine to be pointed in any direction, providing the ability to adjust the thrust vector and control the trajectory of the rocket. The gimbaled nozzle is an important feature for achieving precise control over the rocket's path.

10. The diagram shows a rocket engine with a solid-propellant rocket motor. The solid-propellant motor is designed for一次性使用 (one-time use) applications, where the rocket is intended to be launched and used only once. The motor contains a propellant that is ignited to produce thrust, and it is designed to burn out completely at the end of the flight.

11. The diagram represents a rocket engine with a composite propellant. The composite propellant is a blend of solid and liquid components, providing a combination of high performance and ease of handling. The solid component ensures a stable burn, while the liquid component provides a quick ignition and high thrust.

12. The diagram shows a rocket engine with a liquid-propellant rocket motor. The liquid-propellant motor is designed for a wide range of applications, including spacecraft propulsion. The motor contains separate tanks for the propellants, which are mixed in the combustion chamber and ignited to produce thrust.

13. The diagram represents a rocket engine with a hybrid rocket motor. The hybrid rocket motor combines solid and liquid propellants, providing a balance between the advantages of both systems. The solid component is used for the initial motor ignition, while the liquid component is used to sustain the burn.

14. The diagram shows a rocket engine with a ramjet engine. The ramjet engine is a type of propulsion system that uses atmospheric air for sustenance. It is used in supersonic flight, where the incoming air is compressed and fed into the engine to produce thrust.

15. The diagram represents a rocket engine with a scramjet engine. The scramjet engine is a supersonic ramjet engine that uses a special combustion method called scramjet combustion. It is designed for high-speed flight and can achieve speeds of Mach 6.

16. The diagram shows a rocket engine with a dual-mode engine. The dual-mode engine is capable of operating in multiple modes to achieve different performance characteristics. It can switch between modes based on the mission requirements, providing flexibility and adaptability.

17. The diagram represents a rocket engine with a hybrid rocket motor. The hybrid rocket motor combines solid and liquid propellants, providing a balance between the advantages of both systems. The solid component is used for the initial motor ignition, while the liquid component is used to sustain the burn.

18. The diagram shows a rocket engine with a rocket-assisted takeoff (RAT) system. The RAT system is used to provide additional thrust during takeoff, enabling the rocket to lift off despite any fuel restrictions or weight limitations.

19. The diagram represents a rocket engine with a rocket-assisted takeoff (RAT) system. The RAT system is used to provide additional thrust during takeoff, enabling the rocket to lift off despite any fuel restrictions or weight limitations.

20. The diagram shows a rocket engine with a rocket-assisted takeoff (RAT) system. The RAT system is used to provide additional thrust during takeoff, enabling the rocket to lift off despite any fuel restrictions or weight limitations.

21. The diagram represents a rocket engine with a rocket-assisted takeoff (RAT) system. The RAT system is used to provide additional thrust during takeoff, enabling the rocket to lift off despite any fuel restrictions or weight limitations.

22. The diagram shows a rocket engine with a rocket-assisted takeoff (RAT) system. The RAT system is used to provide additional thrust during takeoff, enabling the rocket to lift off despite any fuel restrictions or weight limitations.

23. The diagram represents a rocket engine with a rocket-assisted takeoff (RAT) system. The RAT system is used to provide additional thrust during takeoff, enabling the rocket to lift off despite any fuel restrictions or weight limitations.

24. The diagram shows a rocket engine with a rocket-assisted takeoff (RAT) system. The RAT system is used to provide additional thrust during takeoff, enabling the rocket to lift off despite any fuel restrictions or weight limitations.

25. The diagram represents a rocket engine with a rocket-assisted takeoff (RAT) system. The RAT system is used to provide additional thrust during takeoff, enabling the rocket to lift off despite any fuel restrictions or weight limitations.

26. The diagram shows a rocket engine with a rocket-assisted takeoff (RAT) system. The RAT system is used to provide additional thrust during takeoff, enabling the rocket to lift off despite any fuel restrictions or weight limitations.

27. The diagram represents a rocket engine with a rocket-assisted takeoff (RAT) system. The RAT system is used to provide additional thrust during takeoff, enabling the rocket to lift off despite any fuel restrictions or weight limitations.

28. The diagram shows a rocket engine with a rocket-assisted takeoff (RAT) system. The RAT system is used to provide additional thrust during takeoff, enabling the rocket to lift off despite any fuel restrictions or weight limitations.

29. The diagram represents a rocket engine with a rocket-assisted takeoff (RAT) system. The RAT system is used to provide additional thrust during takeoff, enabling the rocket to lift off despite any fuel restrictions or weight limitations.

30. The diagram shows a rocket engine with a rocket-assisted takeoff (RAT) system. The RAT system is used to provide additional thrust during takeoff, enabling the rocket to lift off despite any fuel restrictions or weight limitations.

31. The diagram represents a rocket engine with a rocket-assisted takeoff (RAT) system. The RAT system is used to provide additional thrust during takeoff, enabling the rocket to lift off despite any fuel restrictions or weight limitations.

32. The diagram shows a rocket engine with a rocket-assisted takeoff (RAT) system. The RAT system is used to provide additional thrust during takeoff, enabling the rocket to lift off despite any fuel restrictions or weight limitations.

33. The diagram represents a rocket engine with a rocket-assisted takeoff (RAT) system. The RAT system is used to provide additional thrust during takeoff, enabling the rocket to lift off despite any fuel restrictions or weight limitations.

34. The diagram shows a rocket engine with a rocket-assisted takeoff (RAT) system. The RAT system is used to provide additional thrust during takeoff, enabling the rocket to lift off despite any fuel restrictions or weight limitations.

35. The diagram represents a rocket engine with a rocket-assisted takeoff (RAT) system. The RAT system is used to provide additional thrust during takeoff, enabling the rocket to lift off despite any fuel restrictions or weight limitations.

36. The diagram shows a rocket engine with a rocket-assisted takeoff (RAT) system. The RAT system is used to provide additional thrust during takeoff, enabling the rocket to lift off despite any fuel restrictions or weight limitations.

37. The diagram represents a rocket engine with a rocket-assisted takeoff (RAT) system. The RAT system is used to provide additional thrust during takeoff, enabling the rocket to lift off despite any fuel restrictions or weight limitations.

38. The diagram shows a rocket engine with a rocket-assisted takeoff (RAT) system. The RAT system is used to provide additional thrust during takeoff, enabling the rocket to lift off despite any fuel restrictions or weight limitations.

39. The diagram represents a rocket engine with a rocket-assisted takeoff (RAT) system. The RAT system is used to provide additional thrust during takeoff, enabling the rocket to lift off despite any fuel restrictions or weight limitations.

40. The diagram shows a rocket engine with a rocket-assisted takeoff (RAT) system. The RAT system is used to provide additional thrust during takeoff, enabling the rocket to lift off despite any fuel restrictions or weight limitations.

41. The diagram represents a rocket engine with a rocket-assisted takeoff (RAT) system. The RAT system is used to provide additional thrust during takeoff, enabling the rocket to lift off despite any fuel restrictions or weight limitations.

42. The diagram shows a rocket engine with a rocket-assisted takeoff (RAT) system. The RAT system is used to provide additional thrust during takeoff, enabling the rocket to lift off despite any fuel restrictions or weight limitations.

43. The diagram represents a rocket engine with a rocket-assisted takeoff (RAT) system. The RAT system is used to provide additional thrust during takeoff, enabling the rocket to lift off despite any fuel restrictions or weight limitations.

44. The diagram shows a rocket engine with a rocket-assisted takeoff (RAT) system. The RAT system is used to provide additional thrust during takeoff, enabling the rocket to lift off despite any fuel restrictions or weight limitations.

45. The diagram represents a rocket engine with a rocket-assisted takeoff (RAT) system. The RAT system is used to provide additional thrust during takeoff, enabling the rocket to lift off despite any fuel restrictions or weight limitations.

46. The diagram shows a rocket engine with a rocket-assisted takeoff (RAT) system. The RAT system is used to provide additional thrust during takeoff, enabling the rocket to lift off despite any fuel restrictions or weight limitations.

47. The diagram represents a rocket engine with a rocket-assisted takeoff (RAT) system. The RAT system is used to provide additional thrust during takeoff, enabling the rocket to lift off despite any fuel restrictions or weight limitations.

48. The diagram shows a rocket engine with a rocket-assisted takeoff (RAT) system. The RAT system is used to provide additional thrust during takeoff, enabling the rocket to lift off despite any fuel restrictions or weight limitations.

49. The diagram represents a rocket engine with a rocket-assisted takeoff (RAT) system. The RAT system is used to provide additional thrust during takeoff, enabling the rocket to lift off despite any fuel restrictions or weight limitations.

50. The diagram shows a rocket engine with a rocket-assisted takeoff (RAT) system. The RAT system is used to provide additional thrust during takeoff, enabling the rocket to lift off despite any fuel restrictions or weight limitations.